【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(1,0),點B的坐標為(0,4),已知點E(m,0)是線段DO上的動點,過點E作PE⊥x軸交拋物線于點P,交BC于點G,交BD于點H.
(1)求該拋物線的解析式;
(2)當點P在直線BC上方時,請用含m的代數式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.
【答案】(1)y=﹣x2﹣3x+4;(2)PG=﹣m2﹣3m,(3)m=﹣2
【解析】
(1)將A(1,0),B(0,4)代入y=﹣x2+bx+c,運用待定系數法即可求出拋物線的解析式;
(2)先求出拋物線與直線BC的交點為(﹣2,4)(0,4),得出點P在直線BC上方時,m的取值范圍,再根據P(m,﹣m2﹣3m+4),G(m,4),求出PG=﹣m2﹣m;
(3)先求出直線BD的解析式,進而求出H的坐標,然后分兩種情況和
進行討論即可.
解:(1)∵點A和點B在拋物線上, 將A(1,0),B(0,4)代入y=﹣x2+bx+c得
解得
∴該拋物線的解析式為:y=﹣x2﹣3x+4;
(2)∵4=﹣m2﹣3m+4,解得m=﹣3或0,
∴拋物線與直線BC的交點為(﹣3,4)(0,4),
∴點P在直線BC上方時,m的取值范圍是:﹣3<m<0,
∵E(m,0),B(0,4),
∵PE⊥x軸交拋物線于點P,交BC于點G,
∴P(m,﹣m2﹣3m+4),G(m,4),
∴PG=﹣m2﹣3m+4﹣4=﹣m2﹣3m,
(3)∵y=﹣x2﹣3x+4;
∴當y=0時,或-4
設直線BD的解析式為
將B,D兩點代入中,得
解得
∴直線BD的解析式為
①若,那么
即
∴m=﹣2或m=0
∵﹣3<m<0故m=﹣2
②若,那么
即
∴m=﹣2或m=0
∵﹣3<m<0故m=﹣2
綜上所述,m=﹣2
科目:初中數學 來源: 題型:
【題目】某地區教育部門為了解初中數學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統計圖和條形統計圖(均不完整).請根據統計圖中的信息解答下列問題:
(1)本次抽查的樣本容量是 ;
(2)在扇形統計圖中,“主動質疑”對應的圓心角為 度;
(3)將條形統計圖補充完整;
(4)如果該地區初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結果精確到1nmile.參考數據:≈1.41,
≈1.73,
≈2.45)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,點E是線段AC上的一個動點且=k(0<k<1),點F在線段BC上,且DEFH為矩形;過點E作MN⊥BC,分別交AD,BC于點M,N.
(1)求證:△MED∽△NFE;
(2)當EF=FC時,求k的值.
(3)當矩形EFHD的面積最小時,求k的值,并求出矩形EFHD面積的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為( )
A.(,0)B.(2,0)C.(
,0)D.(3,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國慶期間,某風景區推出兩種旅游觀光活動付費方式:若人數不超過20人,人均繳費500元;若人數超過20人,則每增加一位旅客,人均收費降低10元,但是人均收費不低于350元.現在某單位在國慶期間組織一批貢獻突出的職工到該景區旅游觀光,支付了12000元觀光費,請問:該單位一共組織了多少位職工參加旅游觀光活動?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】游泳是一項深受青少年喜愛的體育運動,某中學為了加強學生的游泳安全意識,組織學生觀看了紀實片“孩子,請不要私自下水”,并于觀看后在本校的名學生中作了抽樣調查.制作了下面兩個不完整的統計圖.請根據這兩個統計圖回答以下問題:
(I)這次抽樣調查中,共調查了 名學生;
(2)補全兩個統計圖;
(3)根據抽樣調查的結果,估算該校名學生中大約有多少人“結伴時會下河學游泳”?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,邊長為1,∠A=60,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規律繼續下去,…,則四邊形A2019B2019C2019D2019的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知是
的反比例函數,下表給出了
與
的一些值.
… | -4 | -2 | -1 | 1 | 3 | 4 | … | |||
… | -2 | 6 | 3 | … |
(1)求出這個反比例函數的表達式;
(2)根據函數表達式完成上表;
(3)根據上表,在下圖的平面直角坐標系中作出這個反比例函數的圖象.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com