【題目】如圖,AB=AC,點O在AB上,⊙O過點B,分別與BC、AB交于D、E,過D作DF⊥AC于F.
(1)求證:DF是⊙O的切線;
(2)若AC與⊙O相切于點G,⊙O的半徑為3,CF=1,求AC長.
【答案】(1)證明見解析;(2)AC=8.
【解析】
(1)連接OD,由AB=AC,利用等邊對等角得到一對角相等,再由OB=OD,利用等邊對等角得到一對角相等,等量代換得到一對同位角相等,利用同位角相等兩直線平行得到OD與AC平行,根據DF垂直于AC,得到DF垂直于OD,即可確定出DF為圓O的切線;
(2)連接OG,由AC為圓O的切線,利用切線的性質得到OG垂直于AC,利用三個角為直角且鄰邊相等的四邊形為正方形得到ODFG為正方形,且邊長為3,設AB=AC=x,表示出OA與AG,在直角三角形AOG中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,即為AC的長.
(1)連接OD,
∵AB=AC,
∴∠B=∠C,
∵OB=OD,
∴∠B=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
則DF為圓O的切線;
(2)連接OG,
∵AC與圓O相切,
∴OG⊥AC,
∴∠OGF=∠GFD=∠ODF=90°,且OG=OD,
∴四邊形ODFG為邊長為3的正方形,
設AB=AC=x,則有AG=x﹣3﹣1=x﹣4,AO=x﹣3,
在Rt△AOG中,利用勾股定理得:AO2=AG2+OG2,即(x﹣3)2=(x﹣4)2+32,
解得:x=8,
則AC=8.
科目:初中數學 來源: 題型:
【題目】小明和小剛用如圖所示的兩個轉盤做配紫色游戲,游戲規則是:分別旋轉兩個轉盤,若其中一個轉盤轉出了紅色,另一個轉出了藍色,則可以配成紫色.此時小剛獲勝,否則小明獲勝.
(1)利用畫樹狀圖或列表法表示游戲所有可能出現的結果.
(2)這個游戲對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.
解:設所求方程的根為y,則y=2x,所以x=,把x=
,代入已知方程,
得()2 +
﹣1=0.
化簡,得y2+2y﹣4=0,
故所求方程為y2+2y﹣4=0
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+2x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的相反數,則所求方程為 ;
(2)已知關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不等于零的實數根,求一個一元二次方程,使它的根分別是已知方程根的倒數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一張長10 dm,寬6 dm矩形紙板,將紙板四個角各剪去一個同樣的邊長為x dm的正方形,然后將四周突出部分折起,可制成一個無蓋方盒.
(1) 無蓋方盒盒底的長為______dm,寬為_____dm(用含x的式子表示)
(2) 若要制作一個底面積是32dm2的一個無蓋長方體紙盒,求剪去的正方形邊長x.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,P是⊙O外一點,PA,PB分別和⊙O切于A,B兩點,C是上任意一點,過C作⊙O的切線分別交PA,PB于D,E.(1)若△PDE的周長為10,則PA的長為___ __,(2)連結CA、CB,若∠P=50°,則∠BCA的度數為___ __度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,點P為AC邊上的一點,延長BP至點D,使得AD=AP,當AD⊥AB時,過D作DE⊥AC于E,AB-BC=4,AC=8,則△ABP面積為_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市從不同學校隨機抽取100名初中生對“使用數學教輔用書的冊數”進行調查,統計結果如下:
冊數 | 0 | 1 | 2 | 3 |
人數 | 10 | 20 | 30 | 40 |
關于這組數據,下列說法正確的是( )
A.眾數是2冊B.中位數是2冊
C.平均數是3冊D.方差是1.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CA=12cm,BC=12cm;動點P從點C開始沿CA以2
cm/s的速度向點A移動,動點Q從點A開始沿AB以4cm/s的速度向點B移動,動點R從點B開始沿BC以 2cm/s的速度向點C移動.如果P、Q、R分別從C、A、B同時移動,移動時間為t(0<t<6)s.
(1)∠CAB的度數是 ;
(2)以CB為直徑的⊙O與AB交于點M,當t為何值時,PM與⊙O相切?
(3)寫出△PQR的面積S隨動點移動時間t的函數關系式,并求S的最小值及相應的t值;
(4)是否存在△APQ為等腰三角形?若存在,求出相應的t值;若不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,以 BC 為直徑的⊙O 交 AB 于點 D,過點 D 作∠ADE=∠A,交 AC 于點 E.
(1)求證:DE 是⊙O 的切線;
(2)若 ,BC=15cm,求 DE 的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com