精英家教網 > 初中數學 > 題目詳情

已知:如圖,拋物線y=-x2+bx+c與x軸、y軸分別相交于點A(-1,0)、B(0,3)兩點,其頂點為D.

(1)       求該拋物線的解析式;

(2)       若該拋物線與x軸的另一個交點為E. 求四邊形ABDE的面積;

(3)       △AOB與△BDE是否相似?如果相似,請予以證明;如果不相似,請說明理由.

(注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為

解:(1)由已知得:解得c=3,b=2

∴拋物線的線的解析式為

(2)由頂點坐標公式得頂點坐標為(1,4)

所以對稱軸為x=1,A,E關于x=1對稱,所以E(3,0)

設對稱軸與x軸的交點為F

所以四邊形ABDE的面積=

=

=

=9

(3)相似

如圖,BD=

BE=

DE=

所以, 即: ,所以是直角三角形

所以,且,

所以

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•閔行區二模)已知:如圖,拋物線y=-x2+bx+c與x軸的負半軸相交于點A,與y軸相交于點B(0,3),且∠OAB的余切值為
13

(1)求該拋物線的表達式,并寫出頂點D的坐標;
(2)設該拋物線的對稱軸為直線l,點B關于直線l的對稱點為C,BC與直線l相交于點E.點P在直線l上,如果點D是△PBC的重心,求點P的坐標;
(3)在(2)的條件下,將(1)所求得的拋物線沿y軸向上或向下平移后頂點為點P,寫出平移后拋物線的表達式.點M在平移后的拋物線上,且△MPD的面積等于△BPD的面積的2倍,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,把矩形OCBA放置于直角坐標系中,OC=3,BC=2,取AB的中點M,連結MC,把△MBC沿x軸的負方向平移OC的長度后得到△DAO.
(1)直接寫出點D的坐標;
(2)已知點B與點D在經過原點的拋物線上,點P在第一象限內的該拋物線上移動,過點P作PQ⊥x軸于點Q,連結OP.若以O、P、Q為頂點的三角形與△DAO相似,試求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2009年福建莆田初中畢業、升學統一考試數學試卷及答案 題型:044

已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于C點,與x軸交于A、B兩點,A點在B點左側.點B的坐標為(1,0),OC=30B.

(1)求拋物線的解析式;

(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值:

(3)若點E在x軸上,點P在拋物線上.是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2012—2013學年四川成都望子成龍學校九年級上期中數學試卷(帶解析) 題型:解答題

已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于C點,與x軸交于A、B兩點,A點在B點左側.點B的坐標為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD的面積的最大值;
(3)若點E在x軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2012-2013學年四川成都望子成龍學校九年級上期中數學試卷(解析版) 題型:解答題

已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于C點,與x軸交于A、B兩點,A點在B點左側.點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD的面積的最大值;

(3)若點E在x軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视