【題目】如圖,△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別是R、S,若AQ=PQ,PR=PS,下面四個結論:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正確結論的序號是 (請將所有正確結論的序號都填上).
【答案】①②③④
【解析】
根據角平分線性質即可推出①,根據勾股定理即可推出AR=AS,根據等腰三角形性質推出∠QAP=∠QPA,推出∠QPA=∠BAP,根據平行線判定推出QP//AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS,無法判斷△BRP≌△QSP;連接RS,與AP交于點D,先證△ARD≌△ASD,則RD=SD,∠ADR=∠ADS=90°.
①∵PR⊥AB,PS⊥AC,PR=PS,
∴點P在∠A的平分線上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,
,
∴Rt△ARP≌Rt△ASP(HL),
∴AR=AS,∴①正確;
②∵AQ=QP,
∴∠QAP=∠QPA,
∵∠QAP=∠BAP,
∴∠QPA=∠BAP,
∴QP//AR,∴②正確;
③在Rt△BRP和Rt△QSP中,只有PR=PS,
不滿足三角形全等的條件,故③錯誤;
④如圖,連接RS,與AP交于點D,
在△ARD和△ASD中,
,
∴△ARD≌△ASD,
∴RD=SD,∠ADR=∠ADS=90°,
所以AP垂直平分RS,故④正確,
故答案為:①②④.
科目:初中數學 來源: 題型:
【題目】探究
問題1 已知:如圖1,三角形ABC中,點D是AB邊的中點,AE⊥BC,BF⊥AC,垂足分別為點E,F,AE,BF交于點M,連接DE,DF.若DE=kDF,則k的值為 .
拓展
問題2 已知:如圖2,三角形ABC中,CB=CA,點D是AB邊的中點,點M在三角形ABC的內部,且∠MAC=∠MBC,過點M分別作ME⊥BC,MF⊥AC,垂足分別為點E,F,連接DE,DF.求證:DE=DF.
推廣
問題3 如圖3,若將上面問題2中的條件“CB=CA”變為“CB≠CA”,其他條件不變,試探究DE與DF之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABP與是兩個全等的等邊三角形,且
,有下列四個結論:①
,②
,③
,④四邊形ABCD是軸對稱圖形,其中正確的有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,試探究其中∠1,∠2與∠3,∠4之間的關系,并證明.
(2)用(1)中的結論解決下列問題:如圖2,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明和小軍兩人一起做游戲,游戲規則如下:每人從1,2,…,8中任意選擇一個數字,然后兩人各轉動一次如圖所示的轉盤(轉盤被分為面積相等的四個扇形),兩人轉出的數字之和等于誰事先選擇的數,誰就獲勝;若兩人轉出的數字之和不等于他們各自選擇的數,就在做一次上述游戲,直至決出勝負.若小軍事先選擇的數是5,用列表或畫樹狀圖的方法求他獲勝的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com