【題目】如圖,拋物線y= x2+mx+n與直線y=﹣
x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).
(1)求拋物線的解析式和tan∠BAC的值;
(2)在(1)條件下,P為y軸右側拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.
【答案】解:(1)把A(0,3),C(3,0)代入y= x2+mx+n,得
,
解得: .
∴拋物線的解析式為y= x2﹣
x+3.
聯立 ,
解得: 或
,
∴點B的坐標為(4,1).
過點B作BH⊥x軸于H,如圖1.∵C(3,0),B(4,1),
∴BH=1,OC=3,OH=4,CH=4﹣3=1,∴BH=CH=1.
∵∠BHC=90°,∴∠BCH=45°,BC= .
同理:∠ACO=45°,AC=3 ,
∴∠ACB=180°﹣45°﹣45°=90°,
∴tan∠BAC= ;
(2)存在點P,使得以A,P,Q為頂點的三角形與△ACB相似.
過點P作PG⊥y軸于G,
則∠PGA=90°.
設點P的橫坐標為x,由P在y軸右側可得x>0,則PG=x.
∵PQ⊥PA,∠ACB=90°,∴∠APQ=∠ACB=90°.
若點G在點A的下方,
①如圖2①,當∠PAQ=∠CAB時,則△PAQ∽△CAB.
∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,∴△PGA∽△BCA,
∴ .
∴AG=3PG=3x.
則P(x,3﹣3x).把P(x,3﹣3x)代入y= x2﹣
x+3,得:
x2﹣
x+3=3﹣3x,
整理得:x2+x=0,解得:x1=0(舍去),x2=﹣1(舍去).
②如圖2②,
當∠PAQ=∠CBA時,則△PAQ∽△CBA.
同理可得:AG= PG=
x,則P(x,3﹣
x),
把P(x,3﹣ x)代入y=
x2﹣
x+3,得:
x2﹣
x+3=3﹣
x,
整理得:x2﹣ x=0,解得:x1=0(舍去),x2=
,∴P(
,
);
若點G在點A的上方,
①當∠PAQ=∠CAB時,則△PAQ∽△CAB,
同理可得:點P的坐標為(11,36).
②當∠PAQ=∠CBA時,則△PAQ∽△CBA.
同理可得:點P的坐標為P( ,
).
綜上所述:滿足條件的點P的坐標為(11,36)、( ,
)、(
,
).
【解析】(1)將點A、B的坐標代入拋物線的解析式得到關于m、n的方程組,從而可求得m、n;過點B作BH⊥OH,先求得點C的坐標,然后再證明△AOC和△BHC為等腰直角三角形,從而可求得∠ACB=90°,然后依據勾股定理可求得AC、BC的長,最后依據銳角三角函數的定義可求得答案。
(2)過點P作PG⊥OA,當G在點A的下方時,分為∠PAQ=∠CAB和∠PAQ=∠CBA兩種情況,當點G在點A的上方,分為∠PAQ=∠CAB和∠PAQ=∠CBA兩情況分類計算即可..
【考點精析】通過靈活運用二次函數圖象的平移和相似三角形的判定與性質,掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程(m+1)x2﹣(m+3)x+2=0.
(1)證明:不論m為何值時,方程總有實數根;
(2)m為何整數時,方程有兩個不相等的正整數根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
(1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等邊三角形ABC的邊長為3,過AB邊上一點P作PEAC于點E,Q為BC延長線上一點,取PA=CQ,連接PQ,交AC于M,則EM的長為_________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電器商城銷售、
兩種型號的電風扇,進價分別為
元、
元,下表是近兩周的銷售情況:
銷售時段 | 銷售型號 | 銷售收入 | |
|
| ||
第一周 |
|
|
|
第二周 |
|
|
|
(1)求、
兩種型號的電風扇的銷售單價;
(2)若商城準備用不多于元的金額再采購這兩種型號的電風扇共
臺,求
種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下商城銷售完這臺電風能否實現利潤超過
元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在扇形鐵皮AOB中,OA=20,AOB=36°,OB在直線 上.將此扇形沿l按順時針方向旋轉(旋轉過程中無滑動),當OA第一次落在l上時,停止旋轉.則點O所經過的路線長為
( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小麗假期在娛樂場游玩時,想要利用所學的數學知識測量某個娛樂場地所在山坡AE的高度.她先在山腳下的點E處測得山頂A的仰角是30°,然后,她沿著坡度i=1∶1的斜坡步行15分鐘到達C處,此時,測得點A的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上,求出娛樂場地所在山坡AE的高度AB.(精確到0.1米,參考數據: ≈1.41).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com