【題目】如圖,某足球運動員站在點O處練習射門.將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數關系y=at2+5t+c,己知足球飛行0.8s時,離地面的高度為3.5m.
(1)a= ,c= ;
(2)當足球飛行的時間為多少時,足球離地面最高?最大高度是多少?
(3)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數關系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?
【答案】(1),
;(2)當足球飛行的時間
s時,足球離地面最高,最大高度是4.5m;(3)能.
【解析】
(1)由題意得:函數y=at2+5t+c的圖象經過(0,0.5)(0.8,3.5),代入函數的表達式即可求出a,c的值;
(2)利用配方法即可求出足球飛行的時間以及足球離地面的最大高度;
(3)把x=28代入x=10t得t=2.8,把t=2.8代入解析式求出y的值和2.44m比較大小即可得到結論.
(1)由題意得:函數y=at2+5t+c的圖象經過(0,0.5)(0.8,3.5),
∴,
解得:,
∴拋物線的解析式為:y=﹣t2+5t+
,
故答案為:﹣,
;
(2)∵y=﹣t2+5t+
,
∴y=﹣(t﹣
)2+
,
∴當t=時,y最大=4.5,
∴當足球飛行的時間s時,足球離地面最高,最大高度是4.5m;
(3)把x=28代入x=10t得t=2.8,
∴當t=2.8時,y=﹣×2.82+5×2.8+
=2.25<2.44,
∴他能將球直接射入球門.
科目:初中數學 來源: 題型:
【題目】在直角坐標系XOY中,二次函數圖像的頂點坐標為,且與x軸的兩個交點間的距離為6.
(1)求二次函數解析式;
(2)在x軸上方的拋物線上,是否存在點Q,使得以點Q、A、B為頂點的三角形與△ABC相似?如果存在,請求出Q點的坐標,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+b與雙曲線y=(k為常數,k≠0)在第一象限內交于點A(1,2),且與x軸、y軸分別交于B,C兩點.
(1)求直線和雙曲線的解析式;
(2)點P在x軸上,且△BCP的面積等于2,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P1是反比例函數(k>0)在第一象限圖象上的一點,點A1的坐標為(2,0).若△P1OA1與△P2A1A2均為等邊三角形,則A2點的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,BC=3,tanA=,將Rt△ABC繞點C順時針旋轉90°得到△DEC,點F是DE上一動點,以點F為圓心,FD為半徑作⊙F,當FD=_____時,⊙F與Rt△ABC的邊相切.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B、C、D都在⊙O上,過點C作AC∥BD交OB延長線于點A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司2017年初剛成立時投資1000萬元購買新生產線生產新產品,此外,生產每件該產品還需要成本40元.按規定,該產品售價不得低于60元/件且不超過160元/件,且每年售價確定以后不再變化,該產品的年銷售量(萬件)與產品售價
(元)之間的函數關系如圖所示.
(1)求與
之間的函數關系式,并寫出
的取值范圍;
(2)求2017年該公司的最大利潤?
(3)在2017年取得最大利潤的前提下,2018年公司將重新確定產品售價,能否使兩年共盈利達980萬元.若能,求出2018年產品的售價;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,AB=AC,∠ABC=α,過點A作直線MN,使MN∥BC,點D在直線MN上,作射線BD,將射線BD繞點B順時針旋轉角α后交直線AC于點E.
(1)如圖①,當α=60°,且點D在射線AN上時,直接寫出線段AB,AD,AE的數量關系.
(2)如圖②,當α=45°,且點D在射線AN上時,直寫出線段AB、AD、AE的數量關系,并說明理由.
(3)當α=30°時,若點D在射線AM上,∠ABE=15°,AD=﹣1,請直接寫出線段AE的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com