【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D點,E,F分別是AD,AC上的動點,則CE+EF的最小值為( )
A.
B.
C.
D.6
【答案】C
【解析】解:如圖所示:在AB上取點C′,使AC′=AC,過點C′作C′F⊥AC,垂足為F,交AD與點E.
在Rt△ABC中,依據勾股定理可知BA=10.
∵AC=AC′,∠CAD=∠C′AD,AE=C′E,
∴△AEC≌△AEC′.
∴CE=EC′.
∴CE+EF=C′E+EF.
∴當C′F⊥AC時,CE+EF有最小值.
∵C′F⊥AC,BC⊥AC,
∴C′F∥BC.
∴△AFC′∽△ACB.
∴ =
,即
=
,解得FC′=
.
故選:C.
依據勾股定理可求得AB的長,然后在AB上取點C′,使AC′=AC,過點C′作C′F⊥AC,垂足為F,交AD與點E,先證明C′E=CE,然后可得到CE+EF=C′E+EF,然后依據垂直線段最短可知當點C′F⊥AC時,CE+EF有最小值,最后利用相似三角形的性質求解即可.
科目:初中數學 來源: 題型:
【題目】如圖1,四邊形ABCD的對角線AC,BD相交于點O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.
(1)填空:∠BAD與∠ACB的數量關系為;
(2)求 的值;
(3)將△ACD沿CD翻折,得到△A′CD(如圖2),連接BA′,與CD相交于點P.若CD= ,求PC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由于霧霾天氣頻發,市場上防護口罩出現熱銷.某藥店準備購進一批口罩,已知1個A型口罩和3個B型口罩共需26元;3個A型口罩和2個B型口罩共需29元.
(1)求一個A型口罩和一個B型口罩的售價各是多少元?
(2)藥店準備購進這兩種型號的口罩共50個,其中A型口罩數量不少于35個,且不多于B型口罩的3倍,有哪幾種購買方案,哪種方案最省錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由于只有1張市運動會開幕式的門票,小王和小張都想去,兩人商量采取轉轉盤(如圖,轉盤盤面被分為面積相等,且標有數字1,2,3,4的4個扇形區域)的游戲方式決定誰勝誰去觀看.規則如下:兩人各轉動轉盤一次,當轉盤指針停止,如兩次指針對應盤面數字都是奇數,則小王勝;如兩次指針對應盤面數字都是偶數,則小張勝;如兩次指針對應盤面數字是一奇一偶,視為平局.若為平局,繼續上述游戲,直至分出勝負. 如果小王和小張按上述規則各轉動轉盤一次,則
(1)小王轉動轉盤,當轉盤指針停止,對應盤面數字為奇數的概率是多少?
(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=﹣x2+2x+3與x軸交于點A,B(A在B的左側),與y軸交于點C.
(1)求直線BC的解析式;
(2)拋物線的對稱軸上存在點P,使∠APB=∠ABC,利用圖1求點P的坐標;
(3)點Q在y軸右側的拋物線上,利用圖2比較∠OCQ與∠OCA的大小,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC的內切圓⊙O與AB、BC、AC分別相切于點D、E、F,若 =
,如圖1,.
(1)判斷△ABC的形狀,并證明你的結論;
(2)設AE與DF相交于點M,如圖2,AF=2FC=4,求AM的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2017威海)央視熱播節目“朗讀者”激發了學生的閱讀興趣,某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據調查結果繪制了統計圖(未完成),請根據圖中信息,解答下列問題:
(1)此次共調查了名學生;
(2)將條形統計圖補充完整;
(3)圖2中“小說類”所在扇形的圓心角為度;
(4)若該校共有學生2500人,估計該校喜歡“社科類”書籍的學生人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com