【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點D,交AB于點E.
(1)若∠A=40°,求∠DBC的度數;
(2)若AE=6,△CBD的周長為20,求△ABC的周長.
【答案】
(1)解:∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵AB的垂直平分線MN交AC于點D,
∴AD=BD,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC﹣∠ABD=30°
(2)解:∵MN垂直平分AB,
∴DA=DB,
∵BC+BD+DC=20,
∴AD+DC+BC=20,
∴AC+BC=20,
∵AB=2AE=12,
∴△ABC的周長=AB+AC+BC=12+20=32.
【解析】(1)由在△ABC中,AB=AC,∠A=42°,利用等腰三角形的性質,即可求得∠ABC的度數,然后由AB的垂直平分線MN交AC于點D,根據線段垂直平分線的性質,可求得AD=BD,繼而求得∠ABD的度數,則可求得∠DBC的度數.(2)由△CBD的周長為20,推出AC+BC=20,根據AB=2AE=12,由此即可解決問題.
【考點精析】本題主要考查了線段垂直平分線的性質和等腰三角形的性質的相關知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;等腰三角形的兩個底角相等(簡稱:等邊對等角)才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點R,PS⊥AC于點S,PR=PS,則下列結論:①點P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:∠MON=40°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O 重合),連接AC交射線OE于點D.設∠OAC=x°.
(1)如圖1,若AB∥ON,則
①∠ABO的度數是;
②當∠BAD=∠ABD時,x=;當∠BAD=∠BDA時,x= .
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0; ②b>a+c;③9a+3b+c>0;④c<-3a;⑤a+b+c≥m(am+b)+c,其中正確的有( )個。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com