精英家教網 > 初中數學 > 題目詳情

【題目】閱讀:

對于兩個不等的非零實數ab,若分式的值為零,則xaxb.又因為,所以關于x的方程x+a+b有兩個解,分別為x1a,x2b

應用上面的結論解答下列問題:

(1)方程x+q的兩個解分別為x1=﹣1、x2=4,則P  ,q  

(2)方程x+=4的兩個解中較大的一個為  ;

(3)關于x的方程2x+=2n的兩個解分別為x1x2x1x2),求的值.

【答案】(1)-43;(23;(31.

【解析】

此題涉及的知識點是分式的綜合應用,難度較大,解題時先搞清楚規律,(1)方程,理解p=ab q=a+b,然后根據題目中已知條件進行計算即可;(2)方程的兩個解根據公式可以解出;(3)關于x的方程的兩個解分別為x1、x2對方程進行化簡即可得出結果。

1)應用上面的結論,x1=-1=a、x2=4=b p=ab=-4 q=a+b=3

2)兩個解x1=1 x2=3 ,所以較大的一個為3

3)解:∵

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知∠AOB=BOC=COD,下列結論中錯誤的是(  )

A. OB、OC分別平分

B.

C.

D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=4,BD=6,P是BD上的任意一點,過點P作EF∥AC,與菱形的兩條邊分別交于點E、F.設BP=x,EF=y,則下列圖象能大致反映y與x的函數關系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC分別交AB,AC于M、N,則△AMN的周長為( )

A.12
B.4
C.8
D.不確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB 為⊙O 的切線,切點為 B,連接 AO 與⊙O 交與點 C,BD 為⊙O 的直徑,連接 CD,若∠A=30°,OA=2,則圖中陰影部分的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,方格圖中每個小正方形的邊長為1,點A、B、C都是格點.

(1)畫出△ABC關于直線MN對稱的△A1B1C1;

(2)直接寫出AA1的長度;

(3)如圖2,A、C是直線MN同側固定的點,D是直線MN上的一個動點,在直線MN上畫出點D,使AD+DC最小.(保留作圖痕跡)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明所在的學校加強學生的體育鍛煉,準備從某體育用品商店一次購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買2個籃球和3個足球共需310元,購買5個籃球和2個足球共需500元.

(1)每個籃球和足球各需多少元?

(2)根據實際情況,需從該商店一次性購買籃球和足球功60個,要求購買籃球和足球的總費用不超過4000元,那么最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地新建的一個企業,每月將生產1960噸污水,為保護環境,該企業計劃購置污水處理器,并在如下兩個型號種選擇:

污水處理器型號

A型

B型

處理污水能力(噸/月)

240

180

已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.

(1)求每臺A型、B型污水處理器的價格;

(2)為確保將每月產生的污水全部處理完,該企業決定購買上述的污水處理器,那么他們至少要支付多少錢?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點A,B的對應點C,D,連接AC,BD,CD.

(1)求點C,D的坐標及S四邊形ABDC.

(2)y軸上是否存在一點Q,連接QA,QB,使SQAB=S四邊形ABDC?若存在這樣一點,求出點Q的坐標;若不存在,試說明理由.

(3)如圖②,點P是線段BD上的一個動點,連接PC,PO,當點PBD上移動時(不與B,D重合),給出下列結論:①的值不變,②的值不變,其中有且只有一個是正確的,請你找出這個結論并求其值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视