精英家教網 > 初中數學 > 題目詳情

【題目】如圖,過邊長為3的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,且CQ=PA,連接PQ交AC于點D,則DE的長為(

A.1
B.
C.2
D.

【答案】B
【解析】解:過P作PF∥BC交AC于F,如圖所示:
∵PF∥BC,△ABC是等邊三角形,
∴∠PFD=∠QCD,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,
∴△APF是等邊三角形,
∴AP=PF=AF,
∵PE⊥AC,
∴AE=EF,
∵AP=PF,AP=CQ,
∴PF=CQ,
在△PFD和△QCD中, ,
∴△PFD≌△QCD(AAS),
∴FD=CD,
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DE= AC,
∵AC=3,
∴DE= ,
故選B.

【考點精析】掌握等邊三角形的性質是解答本題的根本,需要知道等邊三角形的三個角都相等并且每個角都是60°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°. 求:

(1)∠AOC的度數;
(2)∠MON的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一水果經銷商購進了A,B兩種水果各10箱,分配給他的甲、乙兩個零售店(分別簡稱甲店、乙店)銷售,預計每箱水果的盈利情況如下表:

1)如果甲、乙兩店各配貨10箱,其中A種水果兩店各5箱,B種水果兩店各5箱,請你計算出經銷商能盈利多少元?

2)在甲、乙兩店各配貨10箱(按整箱配送),且保證乙店盈利不小于100元的條件下,請你設計出使水果經銷商盈利最大的配貨方案,并求出最大盈利為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.

(1)A、B兩種商品的單價分別是多少元?

(2)已知該商店購買B商品的件數比購買A商品的件數的2倍少4件,如果需要購買A、B兩種商品的總件數不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知mn互為倒數,則﹣mn的相反數是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】請畫出一條數軸,然后在數軸上標出下列各數:

﹣3,+1,2.5,﹣1.5,4.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現代互聯網技術的廣泛應用,催生了快遞行業的高度發展,據調查,長沙市某家小型“大學生自主創業”的快遞公司,今年三月份與五月份完成投遞的快遞總件數分別為10萬件和12.1萬件,現假定該公司每月投遞的快遞總件數的增長率相同.

1)求該快遞公司投遞總件數的月平均增長率;

2)如果平均每人每月最多可投遞0.6萬件,那么該公司現有的21名快遞投遞業務員能否完成今年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業務員?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知某種紙一張的厚度約為0.0089cm,用科學記數法表示這個數為(
A.8.9×105
B.8.9×104
C.8.9×103
D.8.9×102

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下表是我市四個景區今年2月份某天6時的氣溫,其中氣溫最低的景區是(

景區

潛山公園

陸水湖

隱水洞

三湖連江

氣溫

﹣1℃

0℃

﹣2℃

2℃


A.潛山公園
B.陸水湖
C.隱水洞
D.三湖連江

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视