【題目】如圖,將直線y=﹣x沿y軸向下平移后的直線恰好經過點A(2,﹣4),且與y軸交于點B,在x軸上存在一點P使得PA+PB的值最小,則點P的坐標為 .
【答案】( ,0)
【解析】解:如圖所示,作點B關于x軸對稱的點B',連接AB',交x軸于P,則點P即為所求,
設直線y=﹣x沿y軸向下平移后的直線解析式為y=﹣x+a,
把A(2,﹣4)代入可得,a=﹣2,
∴平移后的直線為y=﹣x﹣2,
令x=0,則y=﹣2,即B(0,﹣2)
∴B'(0,2),
設直線AB'的解析式為y=kx+b,
把A(2,﹣4),B'(0,2)代入可得, ,解得
,
∴直線AB'的解析式為y=﹣3x+2,
令y=0,則x= ,
∴P( ,0),
所以答案是:( ,0).
【考點精析】解答此題的關鍵在于理解確定一次函數的表達式的相關知識,掌握確定一個一次函數,需要確定一次函數定義式y=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法,以及對軸對稱-最短路線問題的理解,了解已知起點結點,求最短路徑;與確定起點相反,已知終點結點,求最短路徑;已知起點和終點,求兩結點之間的最短路徑;求圖中所有最短路徑.
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c的圖象在平面直角坐標系中的位置如圖所示,則一次函數y=ax+b與反比例函數在同一平面直角坐標系中的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,頂點為( ,﹣
)的拋物線y=ax2+bx+c過點M(2,0).
(1)求拋物線的解析式;
(2)點A是拋物線與x軸的交點(不與點M重合),點B是拋物線與y軸的交點,點C是直線y=x+1上一點(處于x軸下方),點D是反比例函數y= (k>0)圖象上一點,若以點A,B,C,D為頂點的四邊形是菱形,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從O點出發,沿OM的方向以1cm/s的速度運動,當D不與點A重合時,將△ACD繞點C逆時針方向旋轉60°得到△BCE,連結DE.
(1)求證:△CDE是等邊三角形;
(2)如圖2,當6<t<10時,△BDE的周長是否存在最小值?若存在,求出△BDE的最小周長;若不存在,請說明理由;
(3)如圖3,當點D在射線OM上運動時,是否存在以D、E、B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過點D作DE∥AB交CA的延長線于點E,連接AD,BD.
(1)由AB,BD, 圍成的曲邊三角形的面積是;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】江蘇衛視《最強大腦》曾播出一期“辨臉識人”節目,參賽選手以家庭為單位,每組家庭由爸爸媽媽和寶寶3人組成,爸爸、媽媽和寶寶分散在三塊區域,選手需在寶寶中選一個寶寶,然后分別在爸爸區域和媽媽區域中正確找出這個寶寶的父母,不考慮其他因素,僅從數學角度思考,已知在本期比賽中有A、B、C三組家庭進行比賽.
(1)若機器人智能小度選擇A組家庭的寶寶,求小度在媽媽區域中正確找出其媽媽的概率;
(2)如果任選一個寶寶(假如選A組家庭),通過列表或樹狀圖的方法,求機器人智能小度至少正確找對寶寶父母其中一人的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com