精英家教網 > 初中數學 > 題目詳情
如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,DE與AB相交于點E。
(1)求證:AB·AF=CB·CD;
(2)已知AB=15cm,BC=9cm,P是線段DE上的動點,設DP=xcm,梯形BCDP的面積為ycm2。
①求y關于x的函數關系式;
②當x為何值時,△PBC的周長最小,并求出此時y的值。
解:(1)∵,
∴DE垂直平分AC,
,∠DFA=∠DFC=90°,∠DAF=∠DCF,
∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,
∴∠DCF=∠DAF=∠B,
在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B,
∴△DCF∽△ABC,

,
∴AB·AF=CB·CD;
(2)①∵AB=15,BC=9,∠ACB=90°,

,
 ∴
②∵BC=9(定值),
∴△PBC的周長最小,就是PB+PC最小,
由(1)知,點C關于直線DE的對稱點是點A,
∴PB+PC=PB+PA,故只要求PB+PA最小,
顯然當P、A、B三點共線時PB+PA最小,
此時DP=DE,PB+PA=AB,
由(1),
得△DAF∽△ABC,EF∥BC,
,EF=
∴AF∶BC=AD∶AB,即6∶9=AD∶15,
∴AD=10,
Rt△ADF中,AD=10,AF=6,
∴DF=8,
,
∴當時,△PBC的周長最小,此時
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视