精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCDBC中,∠ACB=∠DBC90°,EBC的中點,EFAB,ABDE

1)求證:BCDB

2)若BD8cm,求AC的長.

【答案】1)見解析; 24

【解析】

1)由DEAB,可得∠BFE90°,由直角三角形兩銳角互余,可得∠ABC+DEB90°,由∠ACB90°,由直角三角形兩銳角互余,可得∠ABC+A90°,根據同角的余角相等,可得∠A=∠DEB,然后根據AAS判斷△ABC≌△EDB,根據全等三角形的對應邊相等即可得到BDBC;

2)由(1)可知△ABC≌△EDB,根據全等三角形的對應邊相等,得到ACBE,由EBC的中點,得到BE

1)∵DEAB,可得∠BFE90°,

∴∠ABC+DEB90°

∵∠ACB90°,

∴∠ABC+A90°,

∴∠A=∠DEB

在△ABC和△EDB中, ,

∴△ABC≌△EDBAAS),

BDBC;

2)∵△ABC≌△EDB,

ACBE

EBC的中點,BD8cm

BEcm

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的口袋里裝有四個分別標有1、2、3、4的小球,它們的形狀、大小等完全相同.小明先從口袋里隨機不放回地取出一個小球,記下數字為x;小紅在剩下有三個小球中隨機取出一個小球,記下數字y.

(1)計算由x、y確定的點(x,y)在函數y=﹣x+6圖象上的概率;

(2)小明、小紅約定做一個游戲,其規則是:若x、y滿足xy>6,則小明勝;若x、y滿足xy<6,則小紅勝.這個游戲規則公平嗎?說明理由;若不公平,怎樣修改游戲規則才對雙方公平?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某班“數學興趣小組”對函數y+x的圖象與性質進行了探究,探究過程如下,請補充完整.

(1)函數y+x的自變量x的取值范圍是   ;

(2)下表是yx的幾組對應值.

x

3

2

1

0

2

3

4

5

y

1

3

m

m的值;

(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據描出的點,畫出該函數的圖象;

(4)進一步探究發現,該函數圖象在第一象限內的最低點的坐標是(2,3),結合函數的圖象,寫出該函數的其它性質(一條即可)   

(5)小明發現,該函數的圖象關于點(      )成中心對稱;

該函數的圖象與一條垂直于x軸的直線無交點,則這條直線為   ;

直線ym與該函數的圖象無交點,則m的取值范圍為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,B=30°,DBC上一點,且∠DAB=45°

(1) 求∠DAC的度數.

(2) 求證:ACD是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,AB=AC,AB>BC,點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=2=BAC,若ABC的面積為18,則ABECDF的面積之和是(

A.6B.8C.9D.12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應關系如圖所示:下列結論:甲乙兩地相距600 千米;慢車的速度是60千米/小時;兩車相距300千米時,x=2;④慢車走400千米時快車已到達甲地.其中正確的是___________________ .(填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,

(1)求DE的長;

(2)過點EF作EF⊥CE,交AB于點F,求BF的長;

(3)過點E作EG⊥CE,交CD于點G,求DG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)(觀察發現)如圖 1,ABC CDE 都是等邊三角形,且點 BC、E 在一條直線上,連接 BD AE,BD、AE 相交于點 P,則線段 BD AE 的數量關系是 ,BD AE 相交構成的銳角的度數是 .(只要求寫出結論,不必說明理由)

2)(深入探究 1)如圖 2,ABC CDE 都是等邊三角形,連接 BD AE,BD、AE 相交于點 P,猜想線段 BD AE 的數量關系,以及 BD AE 相交構成的銳角的度數. 請說明理由 結論:

理由:_______________________

3)(深入探究 2)如圖 3,ABC CDE 都是等腰直角三角形,且∠ACB=∠DCE90°,連接 AD、BE,Q AD 中點,連接 QC 并延長交 BE K. 求證:QKBE.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视