【題目】閱讀下面材料:
在數學課上,老師提出利用尺規作圖完成下面問題:
根據小蕓設計的尺規作圖過程,
(1)使用直尺和圓規,補全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:連接OA,OB,OC,
由作圖可知 OA=OB=OC( )(填推理的依據)
∴⊙O為△ABC的外接圓;
∵點C,P在⊙O上,
∴∠APB=∠ACB.( )(填推理的依據)
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…則正方形A2019B2019C2019D2019的邊長是( )
A.()2018B.(
)2019C.(
)2018D.(
)2019
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】沙坪壩區各街道居民積極響應“創文明城區”活動,據了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個社區,B社區居民人口數量不超過A社區居民人口數量的2倍.
(1)求A社區居民人口至少有多少萬人?
(2)街道工作人員調查A,B兩個社區居民對“社會主義核心價值觀”知曉情況發現:A社區有1.2萬人知曉,B社區有1.5萬人知曉,為了提高知曉率,街道工作人員用了兩個月的時間加強宣傳,A社區的知曉人數平均月增長率為m%,B社區的知曉人數第一個月增長了m%,第二月在第一個月的基礎上又增長了2m%,兩個月后,街道居民的知曉率達到92%,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙P的直徑,點在⊙P上,
為⊙P外一點,且∠ADC=90°,直線
為⊙P的切線.
⑴ 試說明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如果一元二次方程滿足
,那么我們稱這個方程為“鳳凰”方程.已知
是“鳳凰”方程,且有兩個相等的實數根,則下列結論正確的是 ( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x 的一元二次方程a x2 + bx + c = 0(a>0)有兩個不相等且非零的實數根,探究a,b,c滿足的條件.
小華根據學習函數的經驗,認為可以從二次函數的角度看一元二次方程,下面是小華的探究過程:第一步:設一元二次方程ax2 +bx+c = 0(a>0)對應的二次函數為y = ax2 +bx +c(a>0);
第二步:借助二次函數圖象,可以得到相應的一元二次方程中a,b,c滿足的條件,列表如下:
方程兩根的情況 | 對應的二次函數的大致圖象 | a,b,c滿足的條件 |
方程有兩個 不相等的負實根 | ||
①_______ | ||
方程有兩個 不相等的正實根 | ②__________ | ③____________ |
(1)請幫助小華將上述表格補充完整;
(2)參考小華的做法,解決問題:
若關于x的一元二次方程有一個負實根和一個正實根,且負實根大于-1,求實數
的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P是正三角形ABC內的一點,且PA=6,PB=8,PC=10,若將△PAC繞點A逆時針旋轉后得到△P′AB.
(1)求點P與點P′之間的距離;
(2)求∠APB的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com