精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點D,則圖中陰影部分的面積是( 。
A.
B.
C.
D.

【答案】A
【解析】解:如圖連接OD、CD.
∵AC是直徑,
∴∠ADC=90°,
∵∠A=30°,
∴∠ACD=90°﹣∠A=60°,
∵OC=OD,
∴△OCD是等邊三角形,
∵BC是切線.
∴∠ACB=90°,∵BC=2 ,∴AB=4 ,AC=6,
∴S=SABC﹣SACD﹣(S扇形OCD﹣SOCD
= ×6×2 ×3× ﹣( ×32)= π.
故選A.

【考點精析】解答此題的關鍵在于理解含30度角的直角三角形的相關知識,掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y= x+2與x軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是x=﹣ 且經過A、C兩點,與x軸的另一交點為點B.

(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正△ABC的邊長為6,那么能夠完全覆蓋這個正△ABC的最小圓的半徑是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明家(記為A)、他上學的學校(記為B)、書店(記為C)依次坐落在一條東西走向的大街上,小明家位于學校西邊250米處,書店位于學校東邊100米處,小明中午放學后,到書店買本輔導書,然后回家吃中午飯,下午直接去學校上課.

(1)試用數軸表示出小明家(A)、學校(B)、書店(C)的位置;

(2)計算出小明家與書店的距離;

(3)小明從中午放學離校到下午上學到校一共走了多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】關于x的一元二次方程x2 x+sinα=0有兩個相等的實數根,則銳角α等于( 。
A.15°
B.30°
C.45°
D.60°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,直線l:y=x﹣1與x軸交于點A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn1 , 使得點A1、A2、A3、…在直線l上,點C1、C2、C3、…在y軸正半軸上,則點Bn的坐標是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小梅在瀏覽某電影評價網站時,搜索了最近關注到的甲、乙、丙三部電影,網站通過對觀眾的抽樣調查,得到這三部電影的評分數據統計圖分別如下:

甲、乙、丙三部電影評分情況統計圖

根據以上材料回答下列問題:

(1)小梅根據所學的統計知識,對以上統計圖中的數據進行了分析,并通過計算得到這三部電影抽樣調查的樣本容量,觀眾評分的平均數、眾數、中位數,請你將下表補充完整:

甲、乙、丙三部電影評分情況統計表

電影

樣本容量

平均數

眾數

中位數

100

3.45

5

3.66

5

100

3

3.5

(2)根據統計圖和統計表中的數據,可以推斷其中_______電影相對比較受歡迎,理由是

_______________________________________________________________________.(至少從兩個不同的角度說明你推斷的合理性)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解下列方程:
(1)2x2+3=7x;
(2)(x+4)2=5(x+4);
(3)x2﹣5x+1=0(用配方法);
(4)2x2﹣2 x﹣5=0.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视