【題目】如圖,△ABC中,∠BAC=90°,AB=AC=1,點D是BC上一個動點(不與B、C重合),在AC上取E點,使∠ADE=45°.
(1)試判斷△ABD與△DCE是否相似并說明理由;
(2)設BD=x,AE=y,求y關于x的函數關系式;并指出當點D在BC上運動(不與B、C重合)時,AE是否存在最小值?若存在,求出最小值;若不存在,說明理由;
(3)當△ADE是等腰三角形時,求AE的長.
【答案】(1)△ABD與△DCE相似,理由見;(2)x=時,y有最小值,最小值為
;(3)當△ADE是等腰三角形時,AE的長為2﹣
或
【解析】
(1)根據等腰直角三角形的性質及三角形內角與外角的關系,易證△ABD∽△DCE.
(2)由△ABD∽△DCE,對應邊成比例及等腰直角三角形的性質可求出y與x的函數關系式,根據函數圖象的頂點坐標可求出其最小值.
(3)當△ADE是等腰三角形時,因為三角形的腰和底不明確,所以應分AD=DE,AE=DE,AD=AE三種情況討論.
解:(1)△ABD與△DCE相似
∵∠BAC=90°,AB=AC
∴∠B=∠C=∠ADE=45°
∵∠ADC=∠B+∠BAD=∠ADE+∠CDE
∴∠BAD=∠CDE
∴△ABD∽△DCE;
(2)由(1)得△ABD∽△DCE
∴,
∵∠BAC=90°,AB=AC=1,
∴BC=,DC=
﹣x,EC=1﹣y
∴,y=x2﹣
x+1=(x﹣
)2+
,
當x=時,y有最小值,最小值為
;
(3)當AD=DE時,△ABD≌△CDE,
∴BD=CE,
∴x=1﹣y,即x﹣x2=x,
∵x≠0,
∴x=﹣1
∴AE=1﹣x=2﹣,
當AE=DE時,DE⊥AC,此時D是BC中點,E也是AC的中點,
所以,AE=;
當AD=AE時,∠DAE=90°,D與B重合,不合題意;
綜上,當△ADE是等腰三角形時,AE的長為2﹣或
.
科目:初中數學 來源: 題型:
【題目】小穎和小紅兩位同學在學習“概率”時,做投擲骰子(質地均勻的正方體)實驗,他們共做了次實驗,實驗的結果如下:
朝上的點數 | ||||||
出現的次數 |
計算“
點朝上”的頻率和“
點朝上”的頻率.
小穎說:“根據實驗,一次實驗中出現
點朝上的概率最大”;小紅說:“如果投擲
次,那么出現
點朝上的次數正好是
次.”小穎和小紅的說法正確嗎?為什么?
小穎和小紅各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數之和為
的倍數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店按進貨價每件6元購進一批貨,零售價為8元時,可以賣出100件,如果零售價高于8元,那么一件也賣不出去,零售價從8元每降低0.1元,可以多賣出10件.設零售價定為x元(6≤x≤8).
(1)這時比零售為8元可以多賣出幾件?
(2)這時可以賣出多少件?
(3)這時所獲利潤y(元)與零售價x(元)的關系式怎樣?
(4)為零售價定為多少時,所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(7分)某中學1000名學生參加了”環保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數,滿分為100分)作為樣本進行統計,并制作了如圖頻數分布表和頻數分布直方圖(不完整且局部污損,其中“■”表示被污損的數據).請解答下列問題:
成績分組 | 頻數 | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計 | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計這1000名學生中有多少人的競賽成績不低于70分;
(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環保知識宣傳活動,求所抽取的2名同學來自同一組的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ ABC中,∠ ABC=90°,AB=BC,D在邊 AC上,AE┴ BD于 E.
(1) 如圖 1,作 CF⊥ BD于 F,求證:CF-AE=EF;
(2) 如圖 2,若 BC=CD,求證:BD=2AE ;
(3) 如圖3,作 BM ⊥BE,且 BM=BE,AE=2,EN=4,連接 CM交 BE于 N,請直接寫出△BCM的面積為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/s秒的速度從點A出發,沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發,沿CB向點B運動,點P運動到F點時停止運動,點Q也同時停止運動,當點P運動__秒時,以P、Q、E、F為頂點的四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com