精英家教網 > 初中數學 > 題目詳情
如圖,在Rt△ABC中,∠C=90°,AB=5,tanB=
34
,點D是BC的中點,點E是AB邊上的動點,DF⊥DE交射線AC于點F.精英家教網
(1)求AC和BC的長;
(2)當EF∥BC時,求BE的長;
(3)連接EF,當△DEF和△ABC相似時,求BE的長.
分析:(1)可設AC=3k,BC=4k,由條件AB=5,tanB=
3
4
,可求出AC和BC的長;
(2)過點E作EH⊥BC,垂足為H,容易證得△EHB∽△ACB,設EH=CF=3k,BH=4k,BE=5k;根據相似的性質可求出k的值問題得解;
(3)過點E作EH⊥BC,垂足為H,易得△EHB∽△ACB,設EH=3k,BE=5k,根據相似的性質可求出k的值,在解題時要注意分類討論.
解答:解:(1)在Rt△ABC中,∠C=90°
tanB=
AC
BC
=
3
4
,∴設AC=3k,BC=4k,
∴AB=5k=5,∴k=1,
∴AC=3,BC=4;

(2)過點E作EH⊥BC,垂足為H.
易得△EHB∽△ACB
設EH=CF=3k,BH=4k,BE=5k;
∵EF∥BC∴∠EFD=∠FDC
∵∠FDE=∠C=90°
∴△EFD∽△FDC
EF
FD
=
FD
CD
∴FD2=EF•CD,
即9k2+4=2(4-4k)
化簡,得9k2+8k-4=0
解得k=
-4±2
13
9
(負值舍去),
BE=5k=
10
13
-20
9


(3)過點E作EH⊥BC,垂足為H.
易得△EHB∽△ACB
設EH=3k,BE=5k
∵∠HED+∠HDE=90°∠FDC+∠HDE=90°
∴∠HED=∠FDC
∵∠EHD=∠C=90°
∴△EHD∽△DCF
EH
CD
=
DE
DF
,
當△DEF和△ABC相似時,有兩種情況:1°
DE
DF
=
AC
BC
=
3
4
,
EH
CD
=
3
4
,
3k
2
=
3
4
解得k=
1
2
,
BE=5k=
5
2
(3分)2°
DE
DF
=
BC
AC
=
4
3
,
EH
CD
=
4
3

3k
2
=
4
3
解得k=
8
9
,
BE=5k=
40
9

綜合1°、2°,當△DEF和△ABC相似時,BE的長為
5
2
40
9
點評:本題考查了相似三角形的判定和性質以及解直角三角形的運用,題目難度不小,具有一定的綜合性.特別是三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形;或依據基本圖形對圖形進行分解、組合;或作輔助線構造相似三角形,判定三角形相似的方法有時可單獨使用,有時需要綜合運用,無論是單獨使用還是綜合運用,都要具備應有的條件方可.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數解析式,并寫出函數的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發,沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數關系式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视