精英家教網 > 初中數學 > 題目詳情

【題目】已知,Rt△ABC中,∠C=90°,BC=6,AC=8.動點P從點A出發沿A—B—C的方向以每秒2個單位的速度運動.P的運動時間為t(秒).

(1)請直接用含t的代數式表示當點PAB上時,BP= ;②當點PBC上時,BP=

(2)求△BPC為等腰三角形的t.

(備用圖)

【答案】110-2t,2t-10;(2t=2.521.4.

【解析】

1)由勾股定理求出AB的長,①當點PAB上時,BP= AB-AP②當點PBC上時,BP=2tAB即可得出結論;

2)分三種情況討論①作BC的垂直平分線交AB于點PBC于點E連接PC,則△BPC是等腰三角形②以B為圓心,BC為半徑作弧與AB交于點P連接PC則△BPC是等腰三角形;③以C為圓心BC為半徑作弧與AB交于點PCCDABD,連接PC,則△BPC是等腰三角形分別計算即可

1)①∵C=90°,BC=6AC=8,∴AB==10,BP=AB-AP=102t;

BP=2tAB=2t10

2)分三種情況討論:①如圖1,BC的垂直平分線交AB于點P,BC于點E連接PC則△BPC是等腰三角形

∵∠C=90°,∴PEAC

BE=EC,∴AP=PB=AB=5,∴t=5÷2=2.5;

如圖2,B為圓心,BC為半徑作弧與AB交于點P連接PC則△BPC是等腰三角形

PB=BC=6,∴AP=ABBP=106=4,t=4÷2=2;

如圖3,C為圓心BC為半徑作弧與AB交于點PCCDABD,連接PC,則△BPC是等腰三角形

ACBC=ABCD,∴CD==4.8,∴BD==3.6

∵∵PC=BC=6,∴PD=BD=3.6,∴AP=ABBP=107.2=2.8t=2.8÷2=1.4

綜上所述t=2.521.4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】我市為全面推進“十個全覆蓋”工作,綠化提質改造工程如火如荼地進行,某施工隊計劃購買甲、乙兩種樹苗共600棵對某標段道路進行綠化改造,已知甲種樹苗每棵100元,乙種樹苗每棵200元.
(1)若購買兩種樹苗的總金額為70000元,求需購買甲、乙兩種樹苗各多少棵?
(2)若購買甲種樹苗的金額不少于購買乙種樹苗的金額,至少應購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校冬季會把課間操改為跑步,但是發現部分學生沒有穿運動鞋的習慣,為保證學生的安全,學校準備購買一批運動鞋供學生借用,現從各年級隨機抽取了部分學生的鞋號,繪制出如下兩幅不完整的統計圖,請根據相關信息,解答下列問題.

(I)本次接受隨機抽樣調查的學生人數為_____;

(Ⅱ)在條形統計圖中,請把空缺部分補充完整;

(Ⅲ)求本次調查獲取的樣本數據的眾數與中位數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數y=ax2+bx+c的圖象經過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數的表達式及其頂點坐標;
(2)若P為y軸上的一個動點,連接PD,則 PB+PD的最小值為
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形內,在對角線AC上找到一點P,使PD+PE的和最小,則這個和的最小值是(  。

A. B. C. 3 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市對初二綜合素質測評中的審美與藝術進行考核,規定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?
(2)某同學測試成績為70分,他的綜合評價得分有可能達到A等嗎?為什么?
(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,連接AC,⊙P和⊙Q分別是△ABC和△ADC的內切圓,則PQ的長是(

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,BD△ABC的角平分線,且BD=BC,EBD延長線上的一點,BE=BA,過EEF⊥AB,F為垂足.下列結論:①△ABD≌△EBC; ②∠BCE+∠BCD=180°; ③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正確的是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠A=D有下列五個條件①AE=DE BE=CE AB=DC ④∠ABC=DCBAC=BD能證明ABCDCB全等的條件有幾個?并選擇其中一個進行證明。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视