【題目】如圖,菱形的邊
的垂直平分線交
于點
,交
于點
,連接
.當
時,則
( )
A.B.
C.
D.
【答案】B
【解析】
連接BF,根據菱形的對角線平分一組對角線可得∠BAC=50°,根據線段垂直平分線上的點到兩端點的距離相等可得AF=BF,根據等邊對等角可得∠FBA=∠FAB,再根據菱形的鄰角互補求出∠ABC,然后求出∠CBF,最后根據菱形的對稱性可得∠CDF=∠CBF.
解:如圖,連接BF,
在菱形ABCD中,∠BAC=∠BAD=
×100°=50°,
∵EF是AB的垂直平分線,
∴AF=BF,
∴∠FBA=∠FAB=50°,
∵菱形ABCD的對邊AD∥BC,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠CBF=∠ABC-∠ABF=80°-50°=30°,
由菱形的對稱性,∠CDF=∠CBF=30°.
故選:B.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy內有三點:(0,﹣2),(1,﹣1),(2.17,0.37).則過這三個點_____(填“能”或“不能”)畫一個圓,理由是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內切圓,依此類推,圖10中有10個直角三角形的內切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:如圖1,在正方形ABCD的內部,作∠DAE=∠ABF=∠BCG=∠CDH,根據三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.
類比探究:如圖2,在正△ABC的內部,作∠1=∠2=∠3,AD,BE,CF兩兩相交于D,E,F三點(D,E,F三點不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)如圖3,進一步探究發現,△ABD的三邊存在一定的等量關系,設BD=a,AD=b,AB=c,請探索a,b,c滿足的等量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線1,交拋物線與點Q.
(1)求拋物線的解析式;
(2)當點P在線段OB上運動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;
(3)在點P運動的過程中,坐標平面內是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=x2﹣6x+m滿足以下條件:當﹣2<x<﹣1時,它的圖象位于x軸的下方;當8<x<9時,它的圖象位于x軸的上方,則m的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點,BP=3,Q是CD邊上一動點,將梯形APQD沿直線PQ折疊,A的對應點為A′,當CA′的長度最小時,CQ的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】太陽能光伏建筑是現代綠色環保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)
(參考數據:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊿OAB中,∠OAB=90°.OA=AB=6.將⊿OAB繞點O逆時針方向旋轉90°得到⊿OA1B1
(1)線段A1B1的長是 ∠AOA1的度數是
(2)連結AA1,求證:四邊形OAA1B1是平行四邊形 ;
(3)求四邊形OAA1B1的面積 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com