【題目】如圖,這是某水庫大壩截面示意圖,張強在水庫大壩頂CF上的瞭望臺D處,測得水面上的小船A的俯角為40°,若DE=3米,CE=2米,CF平行于水面AB,瞭望臺DE垂直于壩頂CF,迎水坡BC的坡度i=4:3,坡長BC=10米,求小船A距坡底B處的長.(結果保留0.1米)(參考數據:sin40°≈0.64,cos40°=0.77,tan40°≈0.84)
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯結FC,當△EFC是直角三角形時,那么BE的長為( )
A. 1.5B. 3
C. 1.5或3D. 有兩種情況以上
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長均為1,線段AB的端點均在小正方形的頂點上.
(1)在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;
(2)在圖中畫出以線段AB為一腰,底邊長為的等腰三角形ABE,點E在小正方形的頂點,則CE= ;
(3)F是邊AD上一動點,則CF+EF的最小值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,E是BC邊上的一個動點,DF⊥AE,垂足為點F,連結CF
(1)若AE=BC
①求證:△ABE≌△DFA;②求四邊形CDFE的周長;③求tan∠FCE的值;
(2)探究:當BE為何值時,△CDF是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,在邊長為4的正方形紙片ABCD中,從邊CD上剪去一個矩形EFGH,且有EF=DH=CE=1cm,FG=2cm,動點P從點A開始沿AD邊向點D以1cm/s的速度運動至點D停止.以AP為邊在AP的下方做正方形AQKP,設點P運動時間為t(s),正方形AQKP和紙片重疊部分的面積為S(cm2),則S與t之間的函數關系用圖象表示大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A坐標為(0,3),x軸上點P(t,0),將線段AP繞點P順時針旋轉90°得到PE,過點E作直線l⊥x軸于D,過點A作AF⊥直線l于F.
(1)當點E是DF的中點時,求直線PE的函數表達式.
(2)當t=5時,求△PEF的面積.
(3)在直線l上是否存在點G,使得∠APO=∠PFD+∠PGD?若存在,試用t的代數式表示點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“淮南牛肉湯”是安徽知名地方小吃.某分店經理發現,當每碗牛肉湯的售價為6元時,每天能賣出500碗;當每碗牛肉湯的售價每增加0.5元時,每天就會少賣出20碗,設每碗牛肉湯的售價增加元時,一天的營業額為
元.
(1)求與
的函數關系式(不要求寫出
的取值范圍);
(2)考慮到顧客可接受價格元/碗的范圍是
,且
為整數,不考慮其他因素,則該分店的牛肉湯每碗多少元時,每天的牛肉湯營業額最大?最大營業額是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】海靜中學開展以“我最喜愛的職業”為主題的調查活動,圍繞“在演員、教師、醫生、律師、公務員共五類職業中,你最喜愛哪一類?(必選且只選一類)”的問題,在全校范圍內隨機抽取部分學生進行問卷調查,將調查結果整理后繪制成如圖所示的不完整的統計圖,請你根據圖中提供的信息回答下列問題:
(1)本次調查共抽取了多少名學生?
(2)求在被調查的學生中,最喜愛教師職業的人數,并補全條形統計圖;
(3)若海靜中學共有1500名學生,請你估計該中學最喜愛律師職業的學生有多少名?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com