精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在等腰RtABC中,∠BAC90°,ABACBC4,點DAC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___

【答案】2

【解析】

連結AE,如圖1,先根據等腰直角三角形的性質得到AB=AC=4,再根據圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的 O上,于是當點O、E、C共線時,CE最小,如圖2,在RtAOC中利用勾股定理計算出OC=2,從而得到CE的最小值為22.

連結AE,如圖1,

∵∠BAC=90°,AB=AC,BC=,

AB=AC=4,

AD為直徑,

∴∠AED=90°

∴∠AEB=90°,

∴點E在以AB為直徑的O上,

O的半徑為2,

∴當點O、E. C共線時,CE最小,如圖2

RtAOC中,∵OA=2AC=4,

OC=

CE=OCOE=22,

即線段CE長度的最小值為22.

故答案為:22.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】關于的一元二次方程.

1)求證:方程總有兩個實數根;

2)若方程有一根小于1,求的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結論有(   )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠B30°,AC2E為斜邊AB的中點,點P是射線BC上的一個動點,連接APPE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時BP的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】操作:

如圖1,正方形ABCD中,AB=a,點E是CD邊上一個動點,在AD上截取AG=DE,連接EG,過正方形的中線O作OF⊥EG交AD邊于F,連接OE、OG、EF、AC.

探究:

在點E的運動過程中:

(1)猜想線段OE與OG的數量關系?并證明你的結論;

(2)∠EOF的度數會發生變化嗎?若不會,求出其度數,若會,請說明理由.

應用:

(3)當a=6時,試求出△DEF的周長,并寫出DE的取值范圍;

(4)當a的值不確定時:

①若=時,試求的值;

②在圖1中,過點E作EH⊥AB于H,過點F作FG⊥CB于G,EH與FG相交于點M;并將圖1簡化得到圖2,記矩形MHBG的面積為S,試用含a的代數式表示出S的值,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x,y的二元一次方程ax+byab為常數且a≠0

1)該方程的解有   組;若a=﹣2,b6,且x,y為非負整數,請直接寫出該方程的解;

2)若是該方程的兩組解,且m1m2

①若n1n22m2m1),求a的值;

②若m1+m23b,n1+n2ab+4,且b2,請比較n1n2大小,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點EF分別在BCCD上.下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正確結論的序號是________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】據統計:從今年年初至520日,豬肉價格不斷走高,520日比年初價格上漲了60%.某市民于某超市今年520日購買1千克豬肉花40元錢.

1)問:那么今年年初豬肉的價格為每千克多少元?

2)某超市將進貨價為每千克30元的豬肉,按520日價格出售,平均一天能銷售出100千克,經調查表明:豬肉的售價每千克下降2元,其日銷售量就增加40千克,超市為了實現銷售豬肉每天有1120元的銷售利潤,為了盡可能讓顧客優惠應該每千克定價為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】紅樹林學校在七年級新生中舉行了全員參加的防溺水安全知識競賽,試卷題目共10題,每題10分.現分別從三個班中各隨機取10名同學的成績(單位:分),收集數據如下:

1班:9070,80,80,8080,80,90,80,100

2班:70,8080,8060,9090,90100,90

3班:90,60,70,8080,80,8090,100100

整理數據:

分數

人數

班級

60

70

80

90

100

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

分析數據:

平均數

中位數

眾數

1

83

80

80

2

83

3

80

80

根據以上信息回答下列問題:

1)請直接寫出表格中的值;

2)比較這三組樣本數據的平均數、中位數和眾數,你認為哪個班的成績比較好?請說明理由;

3)為了讓學生重視安全知識的學習,學校將給競賽成績滿分的同學頒發獎狀,該校七年級新生共570人,試估計需要準備多少張獎狀?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视