精英家教網 > 初中數學 > 題目詳情

【題目】已知,如圖,O為坐標原點,四邊形OABC為矩形,B(5,2),點DOA的中點,動點P在線段BC上以每秒2個單位長的速度由點CB 運動.設動點P的運動時間為t

(1)當t為何值時,四邊形PODB是平行四邊形?

(2)在直線CB上是否存在一點Q,使得O、DQP四點為頂點的四邊形是菱形?若存在,求t的值,并求出Q點的坐標;若不存在,請說明理由.

(3)在線段PB上有一點M,且PM=2.5,當P運動多少,四邊形OAMP的周長最小值為多少,并畫圖標出點M的位置.

【答案】(1)t=1.25;(2)Q(4,2);Q(1.5,2),Q(﹣1.5,2);(3)、

【解析】

(1)先求出OA,進而求出OD=2.5,再由運動知BP=5-2t,進而由平行四邊形的性質建立方程5-2t=2.5即可得出結論;
(2)分三種情況討論,利用菱形的性質和勾股定理即可得出結論;
(3)先判斷出四邊形OAMP周長最小,得出AM+DM最小,即可確定出點M的位置,再用三角形的中位線得出BM,進而求出PC,即可得出結論

(1)∵四邊形OABC為矩形,B(5,2),

BCOA=5,ABOC=2

∵點DOA的中點,

ODOA=2.5,

由運動知,PC=2t,

BPBCPC=5﹣2t

∵四邊形PODB是平行四邊形,

PBOD=2.5,

∴5﹣2t=2.5,

t=1.25;

(2)Q點在P的右邊時,如圖1,

∵四邊形ODQP為菱形,

ODOPPQ=2.5,

∴在Rt△OPC中,由勾股定理得:PC=1.5,

∴2t=1.5;

t=0.75,

Q(4,2);

Q點在P的左邊且在BC線段上時,如圖2,

的方法得出t=2,

Q(1.5,2),

Q點在P的左邊且在BC的延長線上時,如圖3,

的方法得出,t=0.5,

Q(﹣1.5,2);

(3)t

如圖4,

由(1)知,OD=2.5,

PM=2.5,

ODPM,

BCOA

∴四邊形OPMD時平行四邊形,

OPDM,

∵四邊形OAMP的周長為OA+AM+PM+OP=5+AM+2.5+DM=7.5+AM+DM,

∴當AM+DM最小時,四邊形OAMP的周長最小,

∴作點A關于BC的對稱點E,連接DEPBM,

ABEB

BCOA,

BMAD

PCBCBMPM=5﹣DM+AMDE,

t÷2=,周長的最小值為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在△ABC中,已知AB=AC,∠BAC=90°,DBC上一點,ECBC,CE=BD

求證:(1)△ABD≌△ACE;(2)試判斷△ADE的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:對于給定的兩個函數,任取自變量x的一個值,當x<0時,它們對應的函數值互為相反數;當x≥0時,它們對應的函數值相等,我們稱這樣的兩個函數互為相關函數.例如:一次函數y=x﹣1,它們的相關函數為

(1)已知點A(﹣3,6)在一次函數y=ax﹣3的相關函數的圖象上,求a的值;

(2)已知二次函數y=-2x2+3.

①當點Bm,3)在這個函數的相關函數的圖象上時,求m的值;

②當﹣2≤x≤2時,求函數y=-2x2+3的相關函數的最大值和最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+b與坐標軸交于C,D兩點,直線AB與坐標軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).

(1)求點A,C的坐標;

(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數y=(k≠0)的圖象的一個分支經過點E,求k的值;

(3)在(2)的條件下,點M在直線CD上,坐標平面內是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,點ABD都在O上,BC是O的切線,AD∥BC,∠C=30°,AD=4

(1)求A的度數;

(2)求由線段BC、CD與弧BD所圍成的陰影部分的面積.(結果保留π)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一艘輪船由西向東航行,在處測得北偏東反向有小島,繼續前進海里到達處,此時測得小島在船的北偏東方向,則船繼續向東航行________海里,離小島最近(精確到海里,參考數據).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關于直線x=1對稱,那么下列說法正確的是( 。

A. 將拋物線c沿x軸向右平移個單位得到拋物線c′ B. 將拋物線c沿x軸向右平移4個單位得到拋物線c′

C. 將拋物線c沿x軸向右平移個單位得到拋物線c′ D. 將拋物線c沿x軸向右平移6個單位得到拋物線c′

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,CDAB于點D,點ECD上,下列四個條件:①ADED;A=∠BED;C=∠B;④ACEB,將其中兩個作為條件,不能判定△ADC≌△EDB的是

A.①②B.①④C.②③D.②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設=y,求y關于x的函數關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视