【題目】請你仔細觀察下面一組圖形,依據其變化規律推斷第(5)個圖形中所有正方形面積之和為____________(其中圖 中出現的三角形均是直角三角形,四邊形均是正方形).
科目:初中數學 來源: 題型:
【題目】觀察猜想:(1)如圖①,在Rt△ABC中,∠BAC=90°,AB=AC=3,點D與點A重合,點E在邊BC上,連接DE,將線段DE繞點D順時針旋轉90°得到線段DF,連接BF,BE與BF的位置關系是 ,BE+BF= ;
探究證明:(2)在(1)中,如果將點D沿AB方向移動,使AD=1,其余條件不變,如圖②,判斷BE與BF的位置關系,并求BE+BF的值,請寫出你的理由或計算過程;
拓展延伸:(3)如圖③,在△ABC中,AB=AC,∠BAC=a,點D在邊BA的延長線上,BD=n,連接DE,將線段DE繞著點D順時針旋轉,旋轉角∠EDF=a,連接BF,則BE+BF的值是多少?請用含有n,a的式子直接寫出結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在一條筆直公路BD的正上方A處有一探測儀,AD=24m,∠D=90°,一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達C點,測得∠ACD=50°.
(Ⅰ)求B,C兩點間的距離(結果精確到1m);
(Ⅱ)若規定該路段的速度不得超過15m/s,判斷此轎車是否超速.
參考數據:tan31°≈0.6,tan50°≈1.2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年中國北京世界園藝博覽會(以下簡稱“世園會”)于4月29日至10月7日在北京延慶區舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會”、
.“愛我家,愛園藝”、
.“園藝小清新之旅”和
.“快速車覽之旅”.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.
(1)李欣選擇線路.“園藝小清新之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,四邊形
為正方形,點
的坐標為
,動點
沿邊
從
向
以每秒
的速度運動,同時動點
沿邊
從
向
以同樣的速度運動,連接
、
交于點
.
(1)試探索線段、
的關系,寫出你的結論并說明理由;
(2)連接、
,分別取
、
、
、
的中點
、
、
、
,則四邊形
是什么特殊平行四邊形?請在圖①中補全圖形,并說明理由.
(3)如圖②當點運動到
中點時,點
是直線
上任意一點,點
是平面內任意一點,是否存在點
使以
、
、
、
為頂點的四邊形是菱形?若存在,請直接寫出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O是邊長為2的正方形ABCD的中心.函數y=(x﹣h)2的圖象與正方形ABCD有公共點,則h的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=ax2+2nx+c的圖象過坐標原點.
(1)若a=-1.
①當函數自變量的取值范圍是-1≤x≤2,且n≥2時,該函數的最大值是8,求n的值;
②當函數自變量的取值范圍是時,設函數圖象在變化過程中最高點的縱坐標為m,求m與n的函數關系式,并寫出n的取值范圍;
(2)若二次函數的圖象還過點A(-2,0),橫、縱坐標都是整數的點叫做整點.已知點,二次函數圖象與直線AB圍城的區域(不含邊界)為T,若區域T內恰有兩個整點,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,⊙O是△ABC的內切圓,切點分別是D、E、F.
(1)連接OA、OB,則∠AOB= .
(2)若BD=6,AD=4,求⊙O的半徑r.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com