精英家教網 > 初中數學 > 題目詳情
若菱形ABCD的對角線AC長為10cm,且菱形ABCD的周長為52cm,則另一條對角線BD長為
24
24
cm,其面積S=
120
120
 cm2
分析:菱形對角線互相垂直平分,故△ABE為直角三角形,根據菱形周長可以計算AB的值,在Rt△ABE中,已知AB,AE根據勾股定理可以計算BE的長,根據BE即可計算BD的長,根據菱形的對角線的長度即可計算菱形ABCD的面積.
解答:解:(1)菱形對角線互相垂直平分,
故△ABE為直角三角形,
菱形ABCD的周長為52cm,
則AB=13cm,
∵AC=10cm,
∴AE=5cm,
在Rt△ABE中,AB=13cm,AE=5cm,
∴BE=
AB2-BE2
=12cm,
∴BD=2BE=24cm;

(2)菱形的對角線長為BD=10cm,AC=24cm,
∴菱形ABCD的面積S=
1
2
BD•AC=
1
2
×10cm×24cm=120cm2,
故答案為:24cm,120cm2
點評:本題考查了勾股定理在直角三角形中的運用,考查了菱形對角線互相平分的性質,本題中正確計算BE的長是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.
(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段
 

(2)在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由.友情提醒:“尺規作圖”不要求寫作法,但要保留作圖痕跡.
(3)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.若此時AB=3,BD=4
2
,求BC的長.
精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑.

1.如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段         .

2.在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由. 友情提醒:“尺規作圖”不要求寫作法,但要保留作圖痕跡.

3.如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由. 若此時AB=3,BD=,求BC的長.

                                      

 

查看答案和解析>>

科目:初中數學 來源: 題型:

定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑.
【小題1】如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段        .
【小題2】在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由. 友情提醒:“尺規作圖”不要求寫作法,但要保留作圖痕跡.
【小題3】如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由. 若此時AB=3,BD=,求BC的長.
                                    

查看答案和解析>>

科目:初中數學 來源:2012屆江蘇省泰興市黃橋區九年級中考一模數學試卷(帶解析) 題型:解答題

定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑.
【小題1】如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段        .
【小題2】在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由. 友情提醒:“尺規作圖”不要求寫作法,但要保留作圖痕跡.
【小題3】如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由. 若此時AB=3,BD=,求BC的長.
                                    

查看答案和解析>>

科目:初中數學 來源:2011-2012學年江蘇省泰興市黃橋區九年級中考一模數學試卷(解析版) 題型:解答題

定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑.

1.如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段         .

2.在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由. 友情提醒:“尺規作圖”不要求寫作法,但要保留作圖痕跡.

3.如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由. 若此時AB=3,BD=,求BC的長.

                                      

 

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视