某玩具由一個圓形區域和一個扇形區域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別相切于A、B,∠CO2D=60°,直線O1O2與⊙O1、扇形O2CD分別交于E、F兩個點,EF=24cm,設⊙O1的半徑為xcm,
(1)用含x的代數式表示扇形O2CD的半徑;
(2)若⊙O1和扇形O2CD兩個區域的制作成本分別為0.45元/cm2和0.06/cm2元,當⊙O1的半徑為多少時,該玩具成本最?
(1)(24-3x)cm;(2)4cm
解析試題分析:(1)連接O1A.根據切線的性質可得O1A⊥O2C,O2E平分∠CO2D,由∠CO2D=60°可得∠AO2O1=∠CO2D=30°,在Rt△O1AO2中,根據∠AO2O1的正弦函數可表示出O1O2的長,從而得到結果;
(2)設該玩具的制作成本為y元,根據“⊙O1和扇形O2CD兩個區域的制作成本分別為0.45元/cm2和0.06/cm2元”,再結合圓的面積公式、扇形的面積公式根據二次函數的性質求解即可.
(1)連接O1A.
∵⊙O1與O2C、O2D分別切一點A、B,
∴O1A⊥O2C,O2E平分∠CO2D.
∵∠CO2D=60°,
∴∠AO2O1=∠CO2D=30°.
在Rt△O1AO2中,,
∴O1O2=AO1sin∠AO2O1 =xsin30°=2x.
∵EF=24cm,
∴FO2=EF-EO1-O1O2=24-3x,即扇形O2CD的半徑為(24-3x)cm;
(2)設該玩具的制作成本為y元,由題意得
∴當x=4時,y的值最小
答:當⊙O1的半徑為4cm時,該玩具的制作成本最小。
考點:二次函數的應用
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012年初中畢業升學考試(江蘇南京卷)數學(帶解析) 題型:解答題
某玩具由一個圓形區域和一個扇形區域組成,如圖,在和扇形
中,
與
、
分別相切于A、B,
,E、F事直線
與
、扇形
的兩個交點,EF=24cm,設
的半徑為x cm,
① 用含x的代數式表示扇形的半徑;
② 若和扇形
兩個區域的制作成本分別為0.45元
和0.06元
,當
的半徑為多少時,該玩具成本最?
查看答案和解析>>
科目:初中數學 來源:2012-2013學年江西省景德鎮市九年級第三次質檢數學試卷(解析版) 題型:解答題
某玩具由一個圓形區域和一個扇形區域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別相切于A、B,∠CO2D=60°,直線O1O2與⊙O1、扇形O2CD分別交于E、F兩個點,EF=24cm,設⊙O1的半徑為xcm,
(1)用含x的代數式表示扇形O2CD的半徑;
(2)若⊙O1和扇形O2CD兩個區域的制作成本分別為0.45元/cm2和0.06/cm2元,當⊙O1的半徑為多少時,該玩具成本最?
查看答案和解析>>
科目:初中數學 來源:2012年初中畢業升學考試(江蘇南京卷)數學(解析版) 題型:解答題
某玩具由一個圓形區域和一個扇形區域組成,如圖,在和扇形
中,
與
、
分別相切于A、B,
,E、F事直線
與
、扇形
的兩個交點,EF=24cm,設
的半徑為x cm,
① 用含x的代數式表示扇形的半徑;
② 若和扇形
兩個區域的制作成本分別為0.45元
和0.06元
,當
的半徑為多少時,該玩具成本最?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com