精英家教網 > 初中數學 > 題目詳情

在梯形ABCD中,AD∥BC,AC⊥BD,若AD=2,BC=8,BD=6,求:(1)對角線AC的長;(2)梯形ABCD的面積.

解:(1)假設 AC與BD交于E,則且DE+EB=6
得出 DE=1.2,EB=4.8
因為 AC⊥BD 所以 AE2+ED2=AD2AE=1.6
同理 EC=6.4
∴AC=AE+EC=8;

(2)S=S△ABD+S△CBD=BD•AE+BD•EC=BD•AC=×6×8=24
分析:(1)根據AD∥BC,可以得到△ADE∽△CBE,即可求得則,即可求得AE的長,再根據勾股定理即可求得DE,BE的長,即可求解;
(2)根據S=S△ABD+S△CBD=BD•AE+BD•EC=BD•AC即可求得梯形的面積.
點評:本題主要考查了相似三角形的性質:對應邊的比相等,對角線互相垂直的四邊形的面積等于兩對角線乘積的一半.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點,給出下面三個論斷:①AD=BC;②DE=CE;③AE=BE.請你以其中的兩個論斷為條件,填入“已知”欄中,以一個論斷作為結論,填入“求證”欄中,使之成為一個正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點,
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過點A作AE∥DB交CB的延長線于點E.
(1)試說明∠ABD=∠CBD.
(2)若∠C=2∠E,試說明AB=DC.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點P是下底BC邊上的一個動點,從B向C以2cm/s的速度運動,到達點C時停止運動,設運動的時間為t(s).
(1)求BC的長;
(2)當t為何值時,四邊形APCD是等腰梯形;
(3)當t為何值時,以A、B、P為頂點的三角形是等腰三角形.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视