精英家教網 > 初中數學 > 題目詳情

若一次函數y=a1x+b1(a1≠0,a1、b1是常數)與y=a2x+b2(a2≠0,a2、b2是常數),滿足a1+a2=0且b1+b2=0,則稱這兩函數是對稱函數.
(1)當函數y=mx-3與y=2x+n是對稱函數,求m和n的值;
(2)在平面直角坐標系中,一次函數y=2x+3圖象與x軸交于點A、與y軸交于點B,點C與點B 關于x軸對稱,過點A、C的直線解析式是y=kx+b,求證:函數y=2x+3與y=kx+b是對稱函數.

解:(1)∵函數y=mx-3與y=2x+n是對稱函數,
∴由題意可知,
解得
(2)對于一次函數y=2x+3,
令x=0,解得y=3;令y=0,解得x=-,
∴A(-,0),B(0,3),
∵點C與點B關于x軸對稱,
∴C(0,-3),
將A與C的坐標代入y=kx+b中得:
解得:,
∴直線AC的解析式為y=-2x-3,
∵2+(-2)=0,3+(-3)=0,
∴函數y=2x+3與y=kx+b是對稱函數.
分析:(1)根據題中對稱函數的定義,得到m+2=0,-3+n=0,即可求出m與n的值;
(2)對于一次函數y=2x+3,令x=0求出y的值,確定出B的坐標;令y=0求出x的值,確定出A的坐標,再由C與B關于x軸對稱,求出C的坐標,將A與C的坐標代入y=kx+b中,得到關于k與b的方程組,求出方程組的解得到k=-2,b=-3,確定出直線AC的解析式為y=-2x-3,由(-2)+2=0,(-3)+3=0,根據題中對稱函數的定義,即可得證.
點評:此題考查了一次函數綜合題,屬于新定義題型,弄清題中的新定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

25、設關于x的一次函數y=a1x+b1與y=a2x+b2,則稱函數y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)為此兩個函數的生成函數.
(1)當x=1時,求函數y=x+1與y=2x的生成函數的值;
(2)若函數y=a1x+b1與y=a2x+b2的圖象的交點為P,判斷點P是否在此兩個函數的生成函數的圖象上,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•海滄區質檢)若一次函數y=a1x+b1(a1≠0,a1、b1是常數)與y=a2x+b2(a2≠0,a2、b2是常數),滿足a1+a2=0且b1+b2=0,則稱這兩函數是對稱函數.
(1)當函數y=mx-3與y=2x+n是對稱函數,求m和n的值;
(2)在平面直角坐標系中,一次函數y=2x+3圖象與x軸交于點A、與y軸交于點B,點C與點B 關于x軸對稱,過點A、C的直線解析式是y=kx+b,求證:函數y=2x+3與y=kx+b是對稱函數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果有關于x的一次函數y=a1x+b1與y=a2x+b2,則稱函數y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)為此兩個函數的生成函數.若x=1,請求出函數y=x+1與y=2x的生成函數的值.

查看答案和解析>>

科目:初中數學 來源:2012年福建省廈門市海滄區初中學業質量檢查數學試卷(解析版) 題型:解答題

若一次函數y=a1x+b1(a1≠0,a1、b1是常數)與y=a2x+b2(a2≠0,a2、b2是常數),滿足a1+a2=0且b1+b2=0,則稱這兩函數是對稱函數.
(1)當函數y=mx-3與y=2x+n是對稱函數,求m和n的值;
(2)在平面直角坐標系中,一次函數y=2x+3圖象與x軸交于點A、與y軸交于點B,點C與點B 關于x軸對稱,過點A、C的直線解析式是y=kx+b,求證:函數y=2x+3與y=kx+b是對稱函數.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视