精英家教網 > 初中數學 > 題目詳情
如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,連接BD,過點E作EMBD,交BA的延長線于點M.
(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點P,當∠APD=45°時,求圖中陰影部分的面積.
(1)連接OE.
∵DE垂直平分半徑OA,
∴OC=
1
2
OA
∵OA=OE,
∴OC=
1
2
OE,CE=
1
2
DE=
3
2
,
∴∠OEC=30°,
∴OE=
EC
cos30°
=
3
2
3
2
=
3
;

(2)證明:由(1)知:∠AOE=60°,
AE
=
AD
,
∴∠B=
1
2
∠AOE=30°,
∴∠BDE=60°
∵BDME,
∴∠MED=∠BDE=60°,
∴∠MEO=∠MED+∠OEC=60°+30°=90°,
∴OE⊥EM,
∴EM是⊙O的切線;

(3)連接OF.
∵∠DPA=45°,
∵∠DCB=90°,
∴∠CDP=45°,
∴∠EOF=2∠EDF=90°,
∴S陰影=S扇形EOF-S△EOF=
90π×(
3
)
2
360
-
1
2
×
3
×
3
=
3
4
π-
3
2

練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,B為線段AD上一點,△ABC和△BDE都是等邊三角形,連接CE并延長交AD的延長線于點F,△ABC的外接圓⊙O交CF于點M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若過點D作DGBE交EF于點G,過G作GHDE交DF于點H,則易知△DGH是等邊三角形.設等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關系,請直接寫出其結論.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知:C是以AB為直徑的半圓O上一點,CH⊥AB于點H,直線AC與過B點的切線相交于點D,E為CH中點,連接AE并延長交BD于點F,直線CF交直線AB于點G.
(1)求證:①點F是BD中點;②CG是⊙O的切線;
(2)若FB=FE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖是某種圓形裝置的示意圖,圓形裝置中,⊙O的直徑AB=5,AB的不同側有定點C和動點P,tan∠CAB=
4
3
.其運動過程是:點P在弧AB上滑動,過點C作CP的垂線,與PB的延長線交于點Q.
(1)當PC=______時,CQ與⊙O相切;此時CQ=______.
(2)當點P運動到與點C關于AB對稱時,求CQ的長;
(3)當點P運動到弧AB的中點時,求CQ的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,PA與⊙O切于點A,PBC是⊙O的割線,如果PB=BC=2,那么PA的長為( 。
A.2B.2
2
C.4D.8

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,以BC為直徑的⊙O交△CFB的邊CF于點A,BM平分∠ABC交AC于點M,AD⊥BC于點D,AD交BM于點N,ME⊥BC于點E,AB2=AF•AC,cos∠ABD=
3
5
,AD=12.
(1)求證:△ANM≌△ENM;
(2)求證:FB是⊙O的切線;
(3)證明四邊形AMEN是菱形,并求該菱形的面積S.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1所示,在正方形ABCD中,AB=1,
AC
是以點B為圓心,AB長為半徑的圓的一段弧,點E是邊AD上的任意一點(點E與點A、D不重合),過E作AC所在圓的切線,交邊DC于點F,G為切點.
(1)當∠DEF=45°時,求證:點G為線段EF的中點;
(2)設AE=x,FC=y,求y關于x的函數解析式,并寫出函數的定義域;
(3)圖2所示,將△DEF沿直線EF翻折后得△D1EF,當EF=
5
6
時,討論△AD1D與△ED1F是否相似,如果相似,請加以證明;如果不相似,只要求寫出結論,不要求寫出理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

⊙O的圓心到直線l的距離為3cm,⊙O的半徑為1cm,將直線l向垂直于l的方向平移,使l與⊙O相切,則平移的距離是( 。
A.1cmB.2cmC.4cmD.2cm或4cm

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

△ABC中,∠ACB=90°,AB=4,⊙C的半徑長是2,當∠A=30°時,⊙C與直線AB的位置關系是______;當∠A=45°時,⊙C與直線AB的位置關系是______.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视