父親節快到了,明明準備為爸爸煮四個大湯圓作早點:一個芝麻餡,一個水果餡,兩個花生餡,四個湯圓除內部餡料不同外,其它一切均相同.
(1)求爸爸吃前兩個湯圓剛好都是花生餡的概率;
(2)若給爸爸再增加一個花生餡的湯圓,則爸爸吃前兩個湯圓都是花生餡的可能性是否會增大?請說明理由.
【考點】列表法與樹狀圖法.
【分析】(1)首先分別用A,B,C表示芝麻餡、水果餡、花生餡的大湯圓,然后根據題意畫樹狀圖,再由樹狀圖求得所有等可能的結果與爸爸吃前兩個湯圓剛好都是花生餡的情況,然后利用概率公式求解即可求得答案;
(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與爸爸吃前兩個湯圓都是花生的情況,再利用概率公式即可求得給爸爸再增加一個花生餡的湯圓,則爸爸吃前兩個湯圓都是花生的概率,比較大小,即可知爸爸吃前兩個湯圓都是花生的可能性是否會增大.
【解答】解:(1)分別用A,B,C表示芝麻餡、水果餡、花生餡的大湯圓,
畫樹狀圖得:
∵共有12種等可能的結果,爸爸吃前兩個湯圓剛好都是花生餡的有2種情況,
∴爸爸吃前兩個湯圓剛好都是花生餡的概率為: =
;
(2)會增大,
理由:分別用A,B,C表示芝麻餡、水果餡、花生餡的大湯圓,畫樹狀圖得:
∵共有20種等可能的結果,爸爸吃前兩個湯圓都是花生的有6種情況,
∴爸爸吃前兩個湯圓都是花生的概率為: =
>
;
∴給爸爸再增加一個花生餡的湯圓,則爸爸吃前兩個湯圓都是花生的可能性會增大.
【點評】此題考查了樹狀圖法與列表法求概率.用到的知識點為:概率=所求情況數與總情況數之比.
科目:初中數學 來源: 題型:
如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(A點在B點左側),直線l與拋物線交于A、C兩點,其中C點的橫坐標為2.
(1)求A、B兩點的坐標及直線AC的函數表達式;
(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,
)和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由;
(3)求△PAC為直角三角形時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
某農場租用播種機播種小麥,在甲播種機播種2天后,又調來乙播種機參與播種,直至完成800畝的播種任務,播種畝數與天數之間的函數關系如圖所示,那么乙播種機參與播種的天數是 天.
查看答案和解析>>
科目:初中數學 來源: 題型:
下列運算正確的是( 。
A.5m+2m=7m2 B.﹣2m2m3=2m5
C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com