精英家教網 > 初中數學 > 題目詳情
(2010•南平)如圖,△ABC是⊙O的內接等邊三角形,則∠BOC=    度.
【答案】分析:△ABC是等邊三角形,則∠BAC=60°;進而可利用同弧所對的圓周角與圓心角的關系求得∠BOC的度數.
解答:解:∵△ABC是等邊三角形,
∴∠BAC=60°;
∴∠BOC=2∠BAC=120°.
點評:此題主要考查了等邊三角形的性質及圓周角定理的應用.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年江蘇省南通市啟東中學中考數學模擬試卷(一)(解析版) 題型:解答題

(2010•南平)如圖,已知點B(1,3),C(1,0),直線y=x+k經過點B,且與x軸交于點A,將△ABC沿直線AB折疊得到△ABD.
(1)填空:A點坐標為(______,______),D點坐標為(______,______);
(2)若拋物線y=x2+bx+c經過C,D兩點,求拋物線的解析式;
(3)將(2)中的拋物線沿y軸向上平移,設平移后所得拋物線與y軸交點為E,點M是平移后的拋物線與直線AB的公共點,在拋物線平移過程中是否存在某一位置使得直線EM∥x軸.若存在,此時拋物線向上平移了幾個單位?若不存在,請說明理由.
(提示:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=-,頂點坐標是(-

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2010•南平)如圖,已知點B(1,3),C(1,0),直線y=x+k經過點B,且與x軸交于點A,將△ABC沿直線AB折疊得到△ABD.
(1)填空:A點坐標為(______,______),D點坐標為(______,______);
(2)若拋物線y=x2+bx+c經過C,D兩點,求拋物線的解析式;
(3)將(2)中的拋物線沿y軸向上平移,設平移后所得拋物線與y軸交點為E,點M是平移后的拋物線與直線AB的公共點,在拋物線平移過程中是否存在某一位置使得直線EM∥x軸.若存在,此時拋物線向上平移了幾個單位?若不存在,請說明理由.
(提示:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=-,頂點坐標是(-,

查看答案和解析>>

科目:初中數學 來源:2010年福建省南平市中考數學試卷(解析版) 題型:解答題

(2010•南平)如圖,已知點B(1,3),C(1,0),直線y=x+k經過點B,且與x軸交于點A,將△ABC沿直線AB折疊得到△ABD.
(1)填空:A點坐標為(______,______),D點坐標為(______,______);
(2)若拋物線y=x2+bx+c經過C,D兩點,求拋物線的解析式;
(3)將(2)中的拋物線沿y軸向上平移,設平移后所得拋物線與y軸交點為E,點M是平移后的拋物線與直線AB的公共點,在拋物線平移過程中是否存在某一位置使得直線EM∥x軸.若存在,此時拋物線向上平移了幾個單位?若不存在,請說明理由.
(提示:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=-,頂點坐標是(-,

查看答案和解析>>

科目:初中數學 來源:2010年福建省南平市中考數學試卷(解析版) 題型:選擇題

(2010•南平)如圖,一種電子游戲,電子屏幕上有一正六邊形ABCDEF,點P沿直線AB從右向左移動,當出現點P與正六邊形六個頂點中的至少兩個頂點距離相等時,就會發出警報,則直線AB上會發出警報的點P有( )

A.3個
B.4個
C.5個
D.6個

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视