試題分析:(1)由△BDG與四邊形ACDG的周長相等與BD=CD,易得BG=AC+AG,即可得BG=

(AB+AC);
(2)由點D、F分別是BC、AB的中點,利用三角形中位線的性質,易得DF=

AC=

b,由FG=BG-BF,求得DF=FG,又由DE∥AB,即可求得∠FDG=∠EDG;
(3)由△BDG與△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),可得∠B=∠FDG,又由(2)得:∠FGD=∠FDG,易證得DG=BD=CD,可得B、G、C三點在以BC為直徑的圓周上,由圓周角定理,即可得BG⊥CG.
試題解析:(1)解:∵△BDG與四邊形ACDG的周長相等,
∴BD+BG+DG=AC+CD+DG+AG,
∵D是BC的中點,
∴BD=CD,
∴BG=AC+AG,
∵BG+(AC+AG)=AB+AC,
∴BG=

(AB+AC)=

(b+c);
(2)證明:∵點D、F分別是BC、AB的中點,
∴DF=

AC=

b,BF=

AB=

c,
又∵FG=BG-BF=

(b+c)-

c=

b,
∴DF=FG,
∴∠FDG=∠FGD,
∵點D、E分別是BC、AC的中點,
∴DE∥AB,
∴∠EDG=∠FGD,
∴∠FDG=∠EDG,
即DG平分∠EDF;
(3)證明:∵△BDG與△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),
∴∠B=∠FDG,
由(2)得:∠FGD=∠FDG,
∴∠FGD=∠B,
∴DG=BD,
∵BD=CD,
∴DG=BD=CD,
∴B、G、C三點在以BC為直徑的圓周上,
∴∠BGC=90°,
即BG⊥CG.