精英家教網 > 初中數學 > 題目詳情
(1999•成都)已知直線y=kx+b經過點A(2,4)和點(0,-2),那么這條直線的解析式是( )
A.y=-2x+3
B.y=3x-2
C.y=-3x+2
D.y=2x-3
【答案】分析:利用待定系數法求函數解析式.
解答:解:∵直線y=kx+b經過點A(2,4)和點(0,-2),
,解得,
所以,直線解析式為y=3x-2.
故選B.
點評:本題主要考查待定系數法求函數解析式,是中考的熱點之一,需要熟練掌握.
練習冊系列答案
相關習題

科目:初中數學 來源:1999年全國中考數學試題匯編《二次函數》(02)(解析版) 題型:解答題

(1999•成都)已知直線y=x和y=-x+m,二次函數y=x2+px+q的圖象的頂點為M.
(1)若M恰好在直線y=x與y=-x+m的交點處,試證明:無論m取何實數值,二次函數y=x2+px+q的圖象與直線y=-x+m總有兩個不同的交點.
(2)在(1)的條件下,若直線y=-x+m過點D(0,-3),求二次函數y=x2+px+q的表達式,并作出其大致圖象.
(3)在(2)的條件下,若二次函數y=x2+px+q的圖象與y軸交于點C,與x軸的左交點為A,試在直線y=x上求異于M的點P,使點P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數學 來源:1999年全國中考數學試題匯編《一次函數》(01)(解析版) 題型:選擇題

(1999•成都)已知直線y=kx+b經過點A(2,4)和點(0,-2),那么這條直線的解析式是( )
A.y=-2x+3
B.y=3x-2
C.y=-3x+2
D.y=2x-3

查看答案和解析>>

科目:初中數學 來源:1999年四川省成都市中考數學試卷(解析版) 題型:解答題

(1999•成都)已知直線y=x和y=-x+m,二次函數y=x2+px+q的圖象的頂點為M.
(1)若M恰好在直線y=x與y=-x+m的交點處,試證明:無論m取何實數值,二次函數y=x2+px+q的圖象與直線y=-x+m總有兩個不同的交點.
(2)在(1)的條件下,若直線y=-x+m過點D(0,-3),求二次函數y=x2+px+q的表達式,并作出其大致圖象.
(3)在(2)的條件下,若二次函數y=x2+px+q的圖象與y軸交于點C,與x軸的左交點為A,試在直線y=x上求異于M的點P,使點P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數學 來源:1999年四川省成都市中考數學試卷(解析版) 題型:解答題

(1999•成都)已知:如圖,AB和AC與⊙O相切于B、C,P是⊙O上一點,且PE⊥AB于E,PD⊥BC于D,PF⊥AC于F.
求證:PD2=PE•PF.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视