精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在菱形ABCD中,點E,F分別在BC,CD上,且CECF

1)求證△ABE≌△ADF

2)若∠B50°,AEBC,求∠AEF的度數.

【答案】1)見解析;(2)∠AEF65°

【解析】

1)由“SAS”可證△ABE≌△ADF;

2)由菱形的性質可求∠C110°,由余角的性質可求∠CEF的值,即可求∠AEF的值.

證明:(1四邊形ABCD是菱形,

∴ABADBCCD,∠B∠D,AB∥CD

∵CECF,

∴BEDF,且∠B∠D,ABAD,

∴△ABE≌△ADFSAS);

2∵AB∥CD,

∴∠B+∠C180°,且∠B50°,

∴∠C130°,且CECF,

∴∠CEF25°

∵AE⊥BC,

∴∠AEF90°25°65°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】問題背景:如圖1,在中,,,,四邊形是正方形,求圖中陰影部分的面積.

1)發現:如圖,小芳發現,只要將繞點逆時針旋轉一定的角度到達,就能將陰影部分轉化到一個三角形里,從而輕松解答.根據小芳的發現,可求出圖1中陰影部分的面積為______;(直接寫出答案)

2)應用:如圖,在四邊形中,,,于點,若四邊形的面積為,試求出的長;

3)拓展:如圖,在四邊形中,,,以為頂點作角,角的兩邊分別交,,兩點,連接,請直接寫出線段,之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在平面直角坐標系中,點,以線段為直徑作圓,圓心為,直線于點,連接.

1)求證:直線的切線;

2)點軸上任意一動點,連接于點,連接

①當時,求所有點的坐標 (直接寫出);

②求的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市抽獎規則如下:在一個不透明的盒子里裝有分別標有數字1、2、3、44個小球,它們的形狀、大小、質地完全相同,顧客先從盒子里隨機取出一個小球,記下小球上標有的數字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機取出一個小球,記下小球上標有的數字,并計算兩次記下的數字之和若兩次所得的數字之和為8,則可獲得50元代金券一張:若所得的數字之和為6,則可獲得30元代金券一張;若所得的數字之和為5,則可獲得15元代金券一張:其他情況都不中獎.

1)請用列表或樹狀圖的方法,把抽獎一次可能出現的結果表示出來;

2)假如你參加了該超市開業當天的一次抽獎活動,求能中獎的概率P

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線yx+bb2)與x軸,y軸分別交于H,G兩點,邊長為2的正方形OABC的邊OAOC分別在x軸,y軸上,點B在第一象限,正方形OABC繞點B逆時針旋轉,OA的對應邊O'A'恰好落在直線GH上,則b的值為( 。

A.4B.C.5D.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,點IABC的內心,∠AIC=124°,點EAD的延長線上,則∠CDE的度數為( 。

A. 56° B. 62° C. 68° D. 78°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線,直線分別與、相交于點、.小亮同學利用尺規按以下步驟作圖:①以點為圓心,以任意長為半徑作弧交于點,交于點;②分別以、為圓心,以大于長為半徑作弧,兩弧在內交于點;③做射線于點.若,,則的內切圓半徑長等于__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知x28x+16m20m≠0)是關于x的一元二次方程

1)證明:此方程總有兩個不相等的實數根;

2)若等腰ABC的一邊長a6,另兩邊長b、c是該方程的兩個實數根,求ABC的面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视