精英家教網 > 初中數學 > 題目詳情

【題目】拋物線,若a,b,c滿足b=a+c,則稱拋物線恒定拋物線.

1)求證:恒定拋物線必過x軸上的一個定點A;

2)已知恒定拋物線的頂點為P,與x軸另一個交點為B,是否存在以Q為頂點,與x軸另一個交點為C恒定拋物線,使得以PACQ為邊的四邊形是平行四邊形?若存在,求出拋物線解析式;若不存在,請說明理由.

【答案】1)證明見試題解析;(2,或

【解析】

試題(1)由恒定拋物線的定義,即可得出拋物線恒過定點(﹣1,0);

2)求出拋物線的頂點坐標和B的坐標,由題意得出PA∥CQ,PA=CQ;存在兩種情況:QM⊥ACM,則QM=OP=,證明Rt△QMC≌Rt△POA,MC=OA=1,得出點Q的坐標,設拋物線的解析式為,把點A坐標代入求出a的值即可;

頂點Qy軸上,此時點C與點B重合;證明△OQC≌△OPA,得出OQ=OP=,得出點Q坐標,設拋物線的解析式為,把點C坐標代入求出a的值即可.

試題解析:(1)由恒定拋物線,得:b=a+c,即a﹣b+c=0,拋物線,當x=﹣1時,y=0,∴“恒定拋物線必過x軸上的一個定點A﹣1,0);

2)存在;理由如下:∵“恒定拋物線,當y=0時,,解得:x=±1,∵A﹣1,0),∴B1,0);∵x=0時,y=頂點P的坐標為(0,),以PA,CQ為邊的平行四邊形,PA、CQ是對邊,∴PA∥CQ,PA=CQ

存在兩種情況:如圖1所示:作QM⊥ACM,則QM=OP=,∠QMC=90°=∠POA,在Rt△QMCRt△POA中,∵CQ=PA,QM=OP,∴Rt△QMC≌Rt△POAHL),∴MC=OA=1,∴OM=2,A和點C是拋物線上的對稱點,∴AM=MC=1,Q的坐標為(﹣2,),設以Q為頂點,與x軸另一個交點為C恒定拋物線的解析式為,把點A﹣1,0)代入得:a=拋物線的解析式為:,即;

如圖2所示:頂點Qy軸上,此時點C與點B重合,C坐標為(10),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC△OPA中,∵∠OQC=∠OPA,∠COQ=∠AOP,CQ=PA∴△OQC≌△OPAAAS),∴OQ=OP=,Q坐標為(0,),設以Q為頂點,與x軸另一個交點為C恒定拋物線的解析式為,把點C1,0)代入得:a=拋物線的解析式為:;

綜上所述:存在以Q為頂點,與x軸另一個交點為C恒定拋物線,使得以PA,CQ為邊的四邊形是平行四邊形,拋物線的解析式為:,或

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】楊梅是漳州的特色時令水果.楊梅一上市,水果店的老板用1200元購進一批楊梅,很快售完;老板又用2500元購進第二批楊梅,所購件數是第一批的2倍,但進價每件比第一批多了5.

1)第一批楊梅每件進價多少元?

2)老板以每件150元的價格銷售第二批楊梅,售出后,為了盡快售完,決定打折促銷.要使得第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價至少打幾折(利潤售價進價)?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,E,F是正方形ABCD的對角線AC上的兩點,且AE=CF.

(1)求證:四邊形BEDF是菱形;

(2)若正方形ABCD的邊長為4,AE=,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,,平分,且交于點,平分,且交于點,相交于點,連接

1)求證:四邊形是菱形.

2)若,,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司營銷A,B兩種產品,根據市場調研,發現如下信息:

信息1:銷售A種產品所獲利潤y(萬元)與所售產品x(噸)之間存在二次函數關系。

x=1時,y=1.4;當x=3時,y=3.6。

信息2:銷售B種產品所獲利潤y(萬元)與所售產品x(噸)之間存在正比例函數關系。

根據以上信息,解答下列問題:

(1)求二次函數解析式;

(2)該公司準備購進A,B兩種產品共10噸,請設計一個營銷方案,使銷售A,B兩種產品獲得的利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發生,許多道路在事故易發路段設置了區間測速如圖,學校附近有一條筆直的公路l,其間設有區間測速,所有車輛限速40千米/小時數學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區間測速.在l外取一點P,作PCl,垂足為點C.測得PC=30米,∠APC=71°,BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學的數學知識說明該車是否超速.(參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形中,,邊上一點,連接,將沿翻折,點的對應點是,連接,當是直角三角形時,則的值是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+與反比例函數y=(x<0)的圖象交于A(-4,a)B(-1,b)兩點,ACx軸于CBDy軸于D

1)求a 、bk的值;

2)連接OA,OB,求AOB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A、CF在坐標軸上,EOA的中點,四邊形AOCB是矩形,四邊形BDEF是正方形,若點C的坐標為(3,0),則點D的坐標為(  )

A. 1,2.5B. 1,1+ C. 13D. 1,1+

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视