【題目】如圖,⊙O過點B、C.圓心O在等腰直角△ABC的內部,∠BAC=90°,OA=1,BC=6,則⊙O的半徑為 .
【答案】
【解析】
試題分析:過O作OD⊥BC,由垂徑定理可知BD=CD=BC,根據△ABC是等腰直角三角形可知∠ABC=45°,故△ABD也是等腰直角三角形,BD=AD,再由OA=1可求出OD的長,在Rt△OBD中利用勾股定理即可求出OB的長.
解:過O作OD⊥BC,
∵BC是⊙O的一條弦,且BC=6,
∴BD=CD=BC=
×6=3,
∴OD垂直平分BC,又AB=AC,
∴點A在BC的垂直平分線上,即A,O及D三點共線,
∵△ABC是等腰直角三角形,
∴∠ABC=45°,
∴△ABD也是等腰直角三角形,
∴AD=BD=3,
∵OA=1,
∴OD=AD﹣OA=3﹣1=2,
在Rt△OBD中,
OB==
=
.
故答案為:.
科目:初中數學 來源: 題型:
【題目】兩根木棒的長度分別是5cm和7cm,要選擇第三根木棒,將它們釘成一個三角形,如果第三根木棒的長為偶數,那么第三根木棒長的取值情況有( )
A.3種 B.4種 C.5種 D.6種
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某科技開發公司研制出一種新型的產品,每件產品的成本為2400元,銷售單價定為3000元,在該產品的試銷期間,為了促銷,鼓勵商家購買該新型產品,公司決定商家一次購買這種新型產品不超過10件時,每件按3000元銷售;若一次購買該種產品超過10件時,每多購買一件,所購買的全部產品的銷售單價均降低10元,但銷售單價均不低于2600元.
(1)商家一次購買這種產品多少件時,銷售單價恰好為2600元?
(2)設商家一次購買這種產品x件,開發公司所獲得的利潤為y元,求y(元)與x(件)之間的函數關系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發現:當商家一次購買產品的件數超過某一數量時,會出現隨著一次購買的數量的增多,公司所獲得的利潤反而減少這一情況.為使商家一次購買的數量越多,公司所獲得的利潤越大,公司應將最低銷售單價調整為多少元?(其它銷售條件不變)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩名同學將同一個二次三項式因式分解,甲因看錯了一次項系數而分解成(x+1)(x+9);乙因看錯了常數項而分解成(x-2)(x-4),則將原多項式因式分解后的正確結果應該是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com