【題目】如圖,在平面直角坐標系中,有二次函數,頂點為
,與
軸交于
、
兩點(
在
左側),易證點
、
關于直線
對稱,且
在直線
上.過點
作直線
交直線
于
點,
、
分別為直線
和直線
上的兩個動點,連接
、
、
,則
的最小值為________
【答案】8
【解析】
設=0,則可求出拋物線和x軸的交點坐標,即A和B的坐標,再把拋物線解析式配方可求出頂點H的坐標,進而求出過A和H點的直線解析式,
因為過點B作直線BK∥AH交直線l于K點,所以直線BK的斜率和直線AH的相等,又過B,所以可求出直線BK的解析式,再把直線l的解析式和BK的解析式聯立,即可求出K的坐標,根據點H、B關于直線AK對稱,得出HN+MN的最小值是MB,過點K作直線AH的對稱點Q,連接QK,交直線AH于E,得到BM+MK的最小值是BQ,即BQ的長是HN+NM+MK的最小值,由勾股定理得QB=8,即可得出答案.
設=0,
解得x1=-3,x2=1,
∵B點在A點右側,
∴A點坐標為(-3,0),B點坐標為(1,0),
∵=-
(x+1)2+2
,
∴頂點H的坐標是(-1,2),
設直線AH的解析式為y=kx+b,把A和H點的坐標代入求出k=,b=3
,
∵過點B作直線BK∥AH,
∴直線BK的解析式為y=mx+n中的m=,
又因為B在直線BK上,代入求出n=-,
∴直線BK的解析式為:y=x-
,
聯立,
解得:,
∴交點K的坐標是(3,2),
則BK=4,
∵點H、B關于直線AK對稱,K(3,2),
∴HN+MN的最小值是MMB,KD=KE=2,
過K作KD⊥x軸于D,作點K關于直線AH的對稱點Q,連接QK,交直線AH于E,KD=KE=2,
則QM=MK,QE=EK=2,AE⊥QK,
∴根據兩點之間線段最短得出BM+MK的最小值是BQ,即BQ的長是HN+NM+MK的最小值,
∵BK∥AH,
∴∠BKQ=∠HEQ=90°,
由勾股定理得QB==8,
∴HN+NM+MK的最小值為8.
答:HN+NM+MK和的最小值是8.
故答案為:8.
科目:初中數學 來源: 題型:
【題目】南京、上海相距約300 km,快車與慢車的速度分別為100 km/ h和50 km/ h,兩車同時從南京出發,勻速行駛,快車到達上海后,原路返回南京,慢車到達上海后停止.設兩車出發后的時間為x h,快車、慢車行駛過程中離南京的路程為y1、y2 km.
(1)求y1、y2與x之間的函數關系式,并在下列平面直角坐標系中畫出它們的圖像;
(2)若鎮江、南京相距約80 km,求兩車經過鎮江的時間間隔;
(3)直接寫出出發多長時間,兩車相距100 km.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,要建一個面積為130平方米的倉庫,現有能圍成32米長的木板,倉庫的一邊靠墻,并在與墻垂直的一邊開一道1米寬的小門.
(1)如果墻長16米,求倉庫的長和寬;
(2)如果墻長a米,在離開墻9米開外倉庫一側修條小路,那么墻長至少要多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)已知x+y=5,xy=3,求x2+y2的值;
(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;
(3)已知x2﹣3x﹣1=0,求x2+的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AM∥BN,AE平分∠BAM,BE平分∠ABN,
(1)求∠AEB的度數.
(2)如圖2,過點E的直線交射線線AM于點C,交射線BN于點D,求證:AC+BD=AB;
(3)如圖3,過點E的直線交射線線AM的反向延長線于點C,交射線BN于點D,AB=5,AC=3,S△ABE﹣S△ACE=2,求△BDE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊中點,∠EDF繞D點旋轉,它的兩邊分別交AC、CB(或它們的延長線)于E、F
(1)當點E在AC邊上時(如圖1),求證CE=BF
(2)在(1)的條件下,求證:
(3)當∠EDF繞D點旋轉到圖3的位置即點E、F分別在AC、CB邊的延長線上時,上述(2)結論是否成立?若成立,請給予證明;若不成立,又有怎樣的數量關系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊中點,∠EDF繞D點旋轉,它的兩邊分別交AC、CB(或它們的延長線)于E、F
(1)當點E在AC邊上時(如圖1),求證CE=BF
(2)在(1)的條件下,求證:
(3)當∠EDF繞D點旋轉到圖3的位置即點E、F分別在AC、CB邊的延長線上時,上述(2)結論是否成立?若成立,請給予證明;若不成立,又有怎樣的數量關系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,下述結論:①BD平分∠ABC;②D是AC的中點;③AD=BD=BC;④△BDC的周長等于AB+BC.其中正確結論的個數有 .(只填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數字3、4、5.從袋子中隨機取出一個小球,用小球上的數字作為十位的數字,然后放回;再取出一個小球,用小球上的數字作為個位上的數字,這樣組成一個兩位數,試問:按這種方法能組成哪些位數?十位上的數字與個位上的數字之和為9的兩位數的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com