精英家教網 > 初中數學 > 題目詳情

【題目】在同一直角坐標系中,函數y=mx+m和y=﹣mx2+2x+2(m是常數,且m≠0)的圖象可能是(
A.
B.
C.
D.

【答案】D
【解析】解:解法一:逐項分析
A、由函數y=mx+m的圖象可知m<0,即函數y=﹣mx2+2x+2開口方向朝上,與圖象不符,故A選項錯誤;
B、由函數y=mx+m的圖象可知m<0,對稱軸為x= = = <0,則對稱軸應在y軸左側,與圖象不符,故B選項錯誤;
C、由函數y=mx+m的圖象可知m>0,即函數y=﹣mx2+2x+2開口方向朝下,與圖象不符,故C選項錯誤;
D、由函數y=mx+m的圖象可知m<0,即函數y=﹣mx2+2x+2開口方向朝上,對稱軸為x= = = <0,則對稱軸應在y軸左側,與圖象相符,故D選項正確;
解法二:系統分析
當二次函數開口向下時,﹣m<0,m>0,
一次函數圖象過一、二、三象限.
當二次函數開口向上時,﹣m>0,m<0,
對稱軸x= <0,
這時二次函數圖象的對稱軸在y軸左側,
一次函數圖象過二、三、四象限.
故選:D.
本題主要考查一次函數和二次函數的圖象所經過的象限的問題,關鍵是m的正負的確定,對于二次函數y=ax2+bx+c,當a>0時,開口向上;當a<0時,開口向下.對稱軸為x= ,與y軸的交點坐標為(0,c).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】殘缺的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.測得AB=24cm,CD=8cm.求這個圓的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先化簡,再求值: ,其中x的值從不等式組的整數解中選取.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC與△CDE均是等邊三角形,點BC、E在同一條直線上,AEBD交于點OAECD交于點G,ACBD交于點F,連接OC、FG,則下列結論:AE=BD;②AG=BF;③FGBE;④∠BOC=∠EOC.其中正確結論的個數為

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,表示一次函數y=ax+b與正比例函數y=abx(a,b是常數,且ab≠0)的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=x2+bx+c過點(2,﹣2)和(﹣1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉”政策的實施,商場決定采取適當的降價措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數表達式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點,則這樣的點至少有_____個,最多有_____個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點P,作PE⊥AC于E,Q為BC延長線上一點,當PA=CQ時,連PQ交AC邊于D,則DE的長為( )

A. B. C. D. 不能確定

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视