【題目】已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,O是坐標原點,點A的坐標是(﹣1,0),點C的坐標是(0,﹣3)
(1)求拋物線的函數表達式.
(2)求直線BC的函數表達式和∠ABC的度數.
(3)P為線段BC上一點,連接AC,AP,若∠ACB=∠PAB,求點P的坐標.
【答案】
(1)
解:將點A的坐標(﹣1,0),點C的坐標(0,﹣3)代入拋物線解析式得:
,
解得:,
故拋物線解析式為:y=x2﹣2x﹣3;
(2)
解:由(1)得:0=x2﹣2x﹣3,
解得:x1=﹣1,x2=3,故B點坐標為:(3,0),
設直線BC的解析式為:y=kx+d,
則,
解得:,
故直線BC的解析式為:y=x﹣3,
∵B(3,0),C(0,﹣3),
∴BO=OC=3,
∴∠ABC=45°;
(3)
解:過點P作PD⊥x軸于點D,
∵∠ACB=∠PAB,∠ABC=∠PBA,
∴△ABP∽△CBA,
∴=
,
∵BO=OC=3,
∴BC=3,
∵A(﹣1,0),B(3,0),
∴AB=4,
∴=
,
解得:BP=,
由題意可得:PD∥OC,
∴DB=DP=,
∴OD=3﹣=
,
則P(,﹣
).
【解析】(1)直接將A,C點坐標代入拋物線解析式求出即可;
(2)首先求出B點坐標,進而利用待定系數法求出直線BC的解析式,進而利用CO,BO的長求出∠ABC的度數;
(3)利用∠ACB=∠PAB,結合相似三角形的判定與性質得出BP的長,進而得出P點坐標.
【考點精析】通過靈活運用二次函數的性質,掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,∠A=40°.
(1)用尺規作圖作AB的垂直平分線,交AC于點D,交AB于點E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A是雙曲線在第一象限的分支上的一個動點,連接AO并延長交另一分支于點B,過點A作y軸的垂線,過點B作x軸的垂線,兩垂線交于點C,隨著點A的運動,點C的位置也隨之變化.設點C的坐標為(m,n),則m,n滿足的關系式為( )
A.n=﹣2m
B.n=
C.n=﹣4m
D.n=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(x>0)的圖象交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我市實施“城鄉環境綜合治理”期間,某校組織學生開展“走出校門,服務社會”的公益活動.八年級一班王浩根據本班同學參加這次活動的情況,制作了如下的統計圖表: 該班學生參加各項服務的頻數、頻率統計表:
服務類別 | 頻數 | 頻率 |
文明宣傳員 | 4 | 0.08 |
文明勸導員 | 10 | |
義務小警衛 | 8 | 0.16 |
環境小衛士 | 0.32 | |
小小活雷鋒 | 12 | 0.24 |
請根據上面的統計圖表,解答下列問題:
(1)該班參加這次公益活動的學生共有名;
(2)請補全頻數、頻率統計表和頻數分布直方圖;
(3)若八年級共有900名學生報名參加了這次公益活動,試估計參加文明勸導的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中是真命題的是( )
A.經過直線外一點,有且僅有一條直線與一線與已知直線垂直
B.平分弦的直徑垂直于弦
C.對角線互相平分且垂直的四邊形是菱形
D.反比例函數y= ,當k<0時,y隨x的增大而增大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市準備將一批帳篷和食品送往扶貧區.已知帳篷和食品共320件,且帳篷比食品多80件.
(1)直接寫出帳篷有 件,食品有 件;
(2)現計劃租用A、B兩種貨車共8輛,一次性將這批物資全部送到扶貧區,已知兩種車可裝帳篷和食品的件數以及每輛貨車所需付運費情況如表,問:共有幾種租車的方案?最少運費是多少?
帳篷(件) | 食品(件) | 每輛需付運費(元) | |
A種貨車 | 40 | 10 | 780 |
B種貨車 | 20 | 20 | 700 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com