【題目】如圖1,共頂點的兩個三角形△ABC,△AB′C′,若 AB=AB′,AC=AC′,且∠BAC+∠B′AC′=180°,我們稱△ABC 與△AB′C′互為“頂補三角形”.
(1)已知△ABC 與△ADE 互為“頂補三角形”,AF 是△ABC 的中線.
①如圖 2,若△ADE 為等邊三角形時,求證:DE=2AF;
②如圖 3,若△ADE 為任意三角形時,上述結論是否仍然成立?請說明理由.
(2)如圖4,四邊形 ABCD 中,∠B+∠C=90°.在平面內是否存在點 P,使△PAD 與△PBC 互為“頂補三角形”, 若存在,請畫出圖形,并證明;若不存在,請說明理由.
【答案】(1) ①見解析 ②成立,理由見解析(2)存在點P,證明見解析.
【解析】
(1)①首先證明,再利用
與
互為“頂補三角形”,求得
,
,再利用
是
的中線和
,即可證得;
②首先證明,然后根據
,證得
,再根據全等三角形對應邊相等即可解決問題;
(2)先做輔助線,
的垂直平分線
,
則的交點
,然后利用垂直平分線定理,即可解決問題.
證明:(1)①如圖25-1,
為等邊三角形,
,
與
互為“頂補三角形”,
,
是
的中線,
,
,
,
即;
②方法一:如圖25-2,
延長到
,使
,連接
,
是
的中線,
,又
,
,
,
,
,
又,
,
,
即;方法二:如圖25-3,
取中點
,連接
,并延長到
,使
,連接
可證得
,
,(方法同上)
又由是
的中線,
是
的中線,
;
(2)存在點.如圖25-4,分別作線段
,
的垂直平分線
,
則的交點
,使得
與
互為“頂補三角形”.
證明:延長,
交于點
.
,
,
垂直平分
于點
,
垂直平分
于點
,
,
,
,
,
,
,
,
綜上所述,與
互為“頂補三角形”.
科目:初中數學 來源: 題型:
【題目】如圖,直角△ABC中,∠A為直角,AB=6,AC=8.點P,Q,R分別在AB,BC,CA邊上同時開始作勻速運動,2秒后三個點同時停止運動,點P由點A出發以每秒3個單位的速度向點B運動,點Q由點B出發以每秒5個單位的速度向點C運動,點R由點C出發以每秒4個單位的速度向點A運動,在運動過程中:
(1)求證:△APR,△BPQ,△CQR的面積相等;
(2)求△PQR面積的最小值;
(3)用t(秒)(0≤t≤2)表示運動時間,是否存在t,使∠PQR=90°?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市為提倡節約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行超價收費,為更好地決策,自來水公司的隨機抽取了部分用戶的用水量數據,并繪制了如圖不完整的統計圖,(每組數據包括在右端點但不包括左端點),請你根據統計圖解答下列問題:
(1)此次抽樣調查的樣本容量是 .
(2)補全頻數分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數.
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區6萬用戶中約有多少用戶的用水全部享受基本價格?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.
(1)如圖1,當α=60°時,求證:△DCE是等邊三角形.
(2)如圖2.當α=45°時,求證:① =
;②CE⊥DE.
(3)如圖3,當α為任意銳角時,請直接寫出線段CE與DE的數量關系(用α表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學活動課上,研究用正多邊形鑲嵌平面.請解決以下問題:
(1)用一種正多邊形鑲嵌平面
例如,用 6 個全等的正三角形鑲嵌平面,擺放方案如圖所示:
若用 m 個全等的正 n 邊形鑲嵌平面,求出 m,n 應滿足的關系式;
(2)用兩種正多邊形鑲嵌平面
若這兩種正多邊形分別是邊長相等的正三角形和正方形,請畫出兩種不同的擺放方案;
(3)用多種正多邊形鑲嵌平面
若鑲嵌時每個頂點處的正多邊形有 n 個,設這 n 個正多邊形的邊數分別為 x1,x2,…,xn,求出 x1,x2,…,xn 應滿足的關系式.(用含 n 的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,點P為BC上任意一點,連接PA,以PA,PC為鄰邊作平行四邊形PAQC,連接PQ,則PQ的最小值為( 。
A. B.
C.
D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一個正比例函數圖象與一個一次函數圖象交于點A(3,4),且一次函數的圖象與y軸相交于點B(0,-5).
(1)求這兩個函數的表達式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,一枚質地均勻的正四面體骰子,它有四個面并分別標有數字1,2,3,4.如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規則為:游戲者每擲一次骰子,骰子著地一面上的數字是幾,就沿正方形的邊順時針方向連續跳幾個邊長.
如:若從圈A起跳,第一次擲得3,就順時針連續跳3個邊長,落到圈D;若第二次擲得2,就從D開始順時針連續跳2個邊長,落到圈B;…
設游戲者從圈A起跳.
(1)嘉嘉隨機擲一次骰子,求落回到圈A的概率P1;
(2)淇淇隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com