觀察下列等式:
以上每個等式中兩邊數字是分別對稱的,且每個等式中組成兩位數與三位數的數字之間具有相同規律,我們稱這類等式為“數字對稱等式”.
根據上述各式反映的規律填空,使式子稱為“數字對稱等式”:
(1)① 52× = ×25;
② ×396=693× .
(2)設這類等式左邊兩位數的十位數字為,個位數字為
,且2≤
≤9,寫出表示“數字對稱等式”一般規律的式子(含
、
),并證明.
解:(1)①∵5+2=7,
∴左邊的三位數是275,右邊的三位數是572,
∴52×275=572×25,
②∵左邊的三位數是396,
∴左邊的兩位數是63,右邊的兩位數是36,
63×369=693×36;
故答案為:①275,572;②63,36.
(2)∵左邊兩位數的十位數字為a,個位數字為b,
∴左邊的兩位數是10a+b,三位數是100b+10(a+b)+a,
右邊的兩位數是10b+a,三位數是100a+10(a+b)+b,
∴一般規律的式子為:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),
證明:左邊=(10a+b)×[100b+10(a+b)+a],
=(10a+b)(100b+10a+10b+a),
=(10a+b)(110b+11a),
=11(10a+b)(10b+a),
右邊=[100a+10(a+b)+b]×(10b+a),
=(100a+10a+10b+b)(10b+a),
=(110a+11b)(10b+a),
=11(10a+b)(10b+a),
左邊=右邊,
所以“數字對稱等式”一般規律的式子為:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).
【解析】(1)觀察規律,左邊,兩位數所乘的數是這個兩位數的個位數字變為百位數字,十位數字變為個位數字,兩個數字的和放在十位;右邊,三位數與左邊的三位數字百位與個位數字交換,兩位數與左邊的兩位數十位與個位數字交換然后相乘,根據此規律進行填空即可;
(2)按照(1)中對稱等式的方法寫出,然后利用多項式的乘法進行證明即可.
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com