【題目】義潔中學計劃從榮威公司購買A、B兩種型號的小黑板,經洽談,購買一塊A型小黑板比買一塊B型小黑板多用20元.且購買5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購買一塊A型小黑板、一塊B型小黑板各需要多少元.
(2)根據義潔中學實際情況,需從榮威公司購買A、B兩種型號的小黑板共60塊,要求購買A、B兩種型號小黑板的總費用不超過5240元.并且購買A型小黑板的數量應大于購買A、B種型號小黑板總數量的.請你通過計算,求出義潔中學從榮威公司購買A、B兩種型號的小黑板有哪幾種方案.
【答案】解:(1)購買一塊A型小黑板需要l00元,購買一塊8型小黑板需要l20元;(2)有兩種購買方案,方案一:購買A型小黑板21塊,購買8型小黑板39塊;方案二:購買A型小黑板22塊.購買8型小黑板38塊.
【解析】
(1)設購買一塊A型小黑板需要x元,購買一塊B型小黑板需(x-20)元,根據購買5塊A型小黑板和4塊B型小黑板共需820元即可列方程求解;
(2)設購買A型小黑板m塊,則購買B型小黑板(m-60)塊,根據購買A、B兩種型號小黑板的總費用不超過5240元,并且購買A型小黑板的數量應大于購買A、B兩種型號小黑板總數量的即可列不等式組求解.
解:(1)設購買一塊A型小黑板需要x元,則購買一塊B型小黑板需要(x-20)元
根據題意得,5x+4(x-20) =820
解得x=100
答:購買一塊A型小黑板需要l00元,購買一塊8型小黑板需要80元
(2)設購買A型小黑板m塊,則購買B型小黑板(60-m)塊.
根據題意l00m+80(60一m)≤5240 ①
m>60×②
解得20<m≤22
∵m為整數.∴m為21或22
當m=21時,60-m=39:當m=22時,60-m=38.有兩種購買方案:
方案一:購買A型小黑板21塊,購買8型小黑板39塊;
方案二:購買A型小黑板22塊.購買8型小黑板38塊.
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現有兩動點P、Q分別從O、C同時出發,P在線段OA上沿OA方向以每秒
cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1cm的速度勻速運動.設運動時間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個定值,并求出這個定值;
(3)當△OPQ與△PAB和△QPB相似時,拋物線y=x 2+bx+c經過B、P兩點,過線段BP上一動點M作y軸的平行線交拋物線于N,當線段MN的長取最大值時,求直線MN把四邊形OPBQ分成兩部分的面積之比.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了創建全國衛生城市,某社區要清理一個衛生死角內的垃圾,租用甲、乙兩車運送,兩車各運12趟可完成.已知甲、乙兩車單獨運完此垃圾,乙車所運趟數是甲車的2倍.
(1)求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
(2)若租用甲、乙兩車各運12趟需支付運費4800元,且乙車每趟運費比甲車少200元.求單獨租用一臺車,租用哪臺車合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某單位招聘員工,采取筆試與面試相結合的方式進行,兩項成績的原始分均為100分.前5名選手的得分如下:
序號 項目 | 1 | 2 | 3 | 4 | 5 |
筆試成績/分 | 85 | 92 | 84 | 90 | 84 |
面試成績/分 | 90 | 88 | 86 | 90 | 80 |
根據規定,筆試成績和面試成績分別按一定的百分比折和成綜合成績(綜合成績的滿分仍為100分)
(1)現得知1號選手的綜合成績為88分,求筆試成績和面試成績各占的百分比;
(2)求出其余四名選手的綜合成績,并以綜合成績排序確定前兩名人選.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,.①以點
為圓心,
長為半徑畫弧,分別交
、
于點
、
;②在分別以
、
為圓心,
長為半徑畫弧,兩弧交于點
;③連結
、
,則四邊形
的面積為( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知線段AB兩個端點的坐標分別為A(1,-1),B(3,1),將線段AB繞點O逆時針旋轉90°到對應線段CD(點A與點C對應,點B與點D對應).
(1)直接寫出C,D兩點的坐標;
(2)點P在x軸上,當△PCD的周長最小時,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(12分)已知:二次函數y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知M是△ABC的邊AB的中點,D是MC的延長線上一點,滿足∠ACM=∠BDM.
(1)求證:AC=BD;
(2)若∠BMC=60°,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com