如圖,在△ABC中,∠C=90°,BC=5米,AC=12米.M點在線段CA上,從C向A運動,速度為1米/秒;同時N點在線段AB上,從A向B運動,速度為2米/秒.運動時間為t秒.
(1)當t為何值時,∠AMN=∠ANM?
(2)當t為何值時,△AMN的面積最大?并求出這個最大值.
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,直線=
分別與
軸,
軸相交于
兩點,點
是
軸的負半軸上的一個動點,以
為圓心,3為半徑作
.
(1)連結,若
,試判斷
與
軸的位置關系,并說明理由;
(2)當為何值時,以
與直線
=
的兩個交點和圓心
為頂點的三角形是正三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在正方形ABCD中,E是BC上的一點,連結AE,作BF⊥AE,垂足為H,交CD于F,作CG∥AE,交BF于G.
求證:(1)CG=BH,
(2)FC2=BF·GF,
(3)=
.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
操作:小明準備制作棱長為1cm的正方體紙盒,現選用一些廢棄的圓形紙片進行如下設計:
說明:方案一:圖形中的圓過點A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經過兩個正方形的頂點.
紙片利用率=×100%
發現:(1)方案一中的點A、B恰好為該圓一直徑的兩個端點.
你認為小明的這個發現是否正確,請說明理由.
(2)小明通過計算,發現方案一中紙片的利用率僅約為38.2%.
請幫忙計算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個方案的利用率均偏低,又進行了新的設計(方案三),請直接寫出方案三的利用率.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2),(正方形網格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2∶1,并直接寫出C2點的坐標及△A2BC2的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知,如圖1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三個頂點E、G、H分別在矩形ABCD的邊ABCD的邊AB、CD、DA上,AH=2,連接CF.
(1)如圖2,當四邊形EFGH為正方形時,求CF的長和△FCG的面積;
(2)如圖1,設AE=x,△FCG的面積=y,求y與x之間的函數關系式與y的最大值.
(3)當△CG是直角三角形時,求x和y值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在邊長為1的正方形網格內有一個三角形ABC
(1)把△ABC沿著軸向右平移5個單位得到△A1B1C1,請你畫出△A1B1C1
(2)請你以O點為位似中心在第一象限內畫出△ABC的位似圖形△A2B2C2,使得△ABC與△A2B2C2的位似比為1:2;
(3)請你寫出△A2B2C2三個頂點的坐標。(3分)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com