【題目】閱讀下面材料并解決有關問題:
我們知道:|x|= .現在我們可以用這一結論來化簡含有絕對值的代數式,現在我們可以用這一結論來化簡含有絕對值的代數式,如化簡代數式|x+1|+|x﹣2|時,可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別為|x+1|與|x﹣2|的零點值).在實數范圍內,零點值x=﹣1和,x=2可將全體實數分成不重復且不遺漏的如下3種情況:
①x<﹣1;②﹣1≤x<2;③x≥2.
從而化簡代數式|x+1|+|x﹣2|可分以下3種情況:
①當x<﹣1時,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②當﹣1≤x<2時,原式=x+1﹣(x﹣2)=3;
③當x≥2時,原式=x+1+x﹣2=2x﹣1.綜上討論,原式= .
通過以上閱讀,請你解決以下問題:
(1)化簡代數式|x+2|+|x﹣4|.
(2)求|x﹣1|﹣4|x+1|的最大值.
【答案】
(1)解:當x<﹣2時,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;
當﹣2≤x<4時,|x+2|+|x﹣4|=x+2+4﹣x=6;
當x≥4時,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2
(2)解:當x<﹣1時,原式=3x+5<2,
當﹣1≤x≤1時,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,
當x>1時,原式=﹣3x﹣5<﹣8,
則|x﹣1|﹣4|x+1|的最大值為2
【解析】(1)分為x<﹣2、﹣2≤x<4、x≥4三種情況化簡即可;(2)分x<﹣1、﹣1≤x≤1、x>1分別化簡,結合x的取值范圍確定代數式值的范圍,從而求出代數式的最大值.
【考點精析】本題主要考查了絕對值的相關知識點,需要掌握正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】某廠工業廢氣年排放量為450萬立方米,為改善城市的大氣環境質量,決定分二期投入治理,使廢氣的年排放量減少到288萬立方米,如果每期治理中廢氣減少的百分率相同,求每期減少的百分率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明想把一長為25cm,寬為20cm的長方形硬紙片做成一個無蓋的長方體盒子,于是在長方形紙片的四個角各剪去一個相同的小正方形.
(1)若設小正方形的邊長為x cm,用含x的代數式表示圖中陰影部分的面積;
(2)當x=5時,求這個盒子的體積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com