【題目】如圖,∠B=∠C=90°,M是BC的中點,DM平分∠ADC,∠CMD=35°,∠MAB的度數是________.
【答案】35°.
【解析】
過點M作MN⊥AD于N,根據角平分線的性質可得MC=MN,可求出MB=MN,再根據到角的兩邊距離相等的點在角的平分線上判斷出AM是∠BAD的平分線,然后求出∠AMB,再根據直角三角形兩銳角互余求解即可.
解:如圖,過點M作MN⊥AD于N,
∵∠C=90°,DM平分∠ADC,
∴MC=MN,
∴∠CMD=∠NMD =35°,
∵M是BC的中點,
∴MB=MC,
∴MB=MN,
∵∠B=90°,
∴AM是∠BAD的平分線,∠AMB=∠AMN,
∵∠CMD=∠NMD =35°,
∴∠AMB=(180°-35°×2)=55°,
∴∠MAB=90°-∠AMB=90°-55°=35°.
故答案為:35°.
科目:初中數學 來源: 題型:
【題目】前幾天,在青島召開了舉世目的“上合”會議,會議之前需要印刷批宣傳彩頁.經招標,印務公司中標,該印務公司給出了三種方案供主辦方選擇:
方案一:每份彩頁收印刷費元.
方案二:收制版費元,外加每份彩頁收印刷費
元.
方案三:印數在份以內時,每份彩頁收印刷費
元,超過
份時,超過部分按每份
元收費.
(1)分別寫出各方案的收費(元)與印刷彩頁的份數
(份)之間的關系式.
(2)若預計要印刷份的宣傳彩頁,請你幫主辦方選擇一種合算的方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內,豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,CD是經過∠BCA頂點C的一條直線,且直線CD經過∠BCA的內部,點E,F在射線CD上,已知CA=CB且∠BEC=∠CFA=∠α.
(1)如圖1,若∠BCA=80°,∠α=90°,問EF=BE-AF,成立嗎?說明理由.
(2)將(1)中的已知條件改成∠BCA=∠β,∠α+∠β=180°(如圖2),問EF=BE-AF仍成立嗎?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:四邊形ABCD中,∠ABC=∠ADC=90°,AB=BC,連接BD.
(1)畫出示意圖;
(2)請問:DB平分∠ADC嗎?請給出結論,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=2x與反比例函數y=(x>0)的圖象交于點A(4,n),AB⊥x軸,垂足為B.
(1)求k的值;
(2)點C在AB上,若OC=AC,求AC的長;
(3)點D為x軸正半軸上一點,在(2)的條件下,若S△OCD=S△ACD,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,規定把一個三角形先沿x軸翻折,再向右平移兩個單位稱為一次變換,如圖,已知等邊三角形ABC的頂點B、C的坐標分別是,(-1,-1),(-3,-1),把三角形ABC經過連續9次這樣的變換得到三角形A’B’C’,則點A的對應點A’的坐標是_____
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com