【題目】如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于上底面上一點).已知E、F在AB邊上,是被剪去的一個等腰直角三角形斜邊的兩個端點,設AE=BF=x(cm).
(1)若折成的包裝盒恰好是個正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應取何值?
【答案】(1)這個包裝盒的體積是432cm3;
(2)當x=8時,S取得最大值384cm2.
【解析】
試題分析:(1)根據已知得出這個正方體的底面邊長NQ=ME=x,EF=
ME=2x,再利用AB=24cm,求出x即可得出這個包裝盒的體積V;
(2)利用已知表示出包裝盒的表面,進而利用函數最值求出即可.
解:(1)根據題意,設AE=BF=x(cm),折成的包裝盒恰好是個正方體,
知這個正方體的底面邊長NQ=ME=x,則QE=QF=
x,故EF=
ME=2x,
∵正方形紙片ABCD邊長為24cm,
∴x+2x+x=24,
解得:x=6,
則 正方體的底面邊長a=6,
V=a3==432
(cm3);
答:這個包裝盒的體積是432cm3;
(2)設包裝盒的底面邊長為acm,高為hcm,則a=,h=
,
∴S=4ah+a2=4x
(12﹣x)+
=﹣6x2+96x=﹣6(x﹣8)2+384,
∵0<x<12,
∴當x=8時,S取得最大值384cm2.
科目:初中數學 來源: 題型:
【題目】圓上有五個點,這五個點將圓分成五等份(每一份稱為一段弧長),把這五個點按順時針方向依次編號為1,2,3,4,5,若從某一點開始,沿圓周順時針方向行走,點的編號是數字幾,就走幾段弧長,則稱這種走法為一次“移位”.如:小明在編號為3的點,那么他應走3段弧長,即從3→ 4→5→1為第一次“移位”,這時他到達編號為1的點,然后從1→2為第二次“移位”.若小明從編號為4的點開始,第2014次“移位”后,他到達編號為 的點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,CD=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連結AG、CF.
(1)求證:①△ABG≌△AFG; ②求GC的長;
(2)求△FGC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知一組數據:20、30、40、50、50、50、60、70、80,其中平均數、中位數、眾數的大小關系是( )
A.平均數>中位數>眾數 B.平均數<中位數<眾數
C.中位數<眾數<平均數 D.平均數=中位數=眾數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一種“24點”游戲,其游戲規則是這樣的,將4個1~13之間的數,進行加減乘除四則運算(每個數且只能用一次),使運算結果為24,例如,1,2,3,4可作如下運算:(1+2+3)×4=24,1×2×3×4=24.現有四個有理數3,4,﹣6,10,你能運用上述規則,寫出一種運算式,使其結果等于24.你寫出算式是:_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com