【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AC=BC,D是線段BC上一動點(不與點B、C重合),連接AD,延長BC至點E,使得CE=CD,過點E作EF⊥AD于點F,再延長EF交AB于點M.
(1)若D為BC的中點,AB=4,求AD的長;
(2)求證:BM=CD.
【答案】(1);(2)詳見解析.
【解析】
(1)根據等腰直角三角形的性質得到AC=BC=2,根據勾股定理即可得到結論;
(2)過M作MH⊥BC于H,連接AE,根據線段垂直平分線的性質得到AE=AD,求得∠EAC=∠DAC,根據余角的性質得到∠AME=∠EAM,根據全等三角形的性質得到CD=MH,于是得到結論.
(1)∵在等腰Rt△ABC中,∠ACB=90°,AC=BC,AB=4,
∴AC=BC=2,
∵D為BC的中點,
∴CD=BC=
,
∴;
(2)過M做MH⊥BC于H,連接AE,
∵AC⊥BE,CD=CE,
∴AE=AD,
∴∠EAC=∠DAC,
∵EF⊥AD,
∴∠EFD=∠ACD=90°,
∴∠CAD+∠ADC=∠ADC+∠DEF,
∴∠CAD=∠DEF,
∴∠EAC=∠DEF,
∴∠EAC=∠DEF,
∵∠AME=∠B+∠BEM,∠EAM=∠BAC+∠EAC,∠CAB=∠B=45°,
∴∠AME=∠EAM,
∴AE=EM,
∴AD=EM,
∵∠ACD=∠EHM=90°,
∴△ACD≌△EHM(AAS),
∴CD=MH,
∴BM=MH=
CD.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+2x+m.
(1)如果二次函數的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數圖象的對稱軸交于點P,求點P的坐標.
(3)根據圖象直接寫出使一次函數值大于二次函數值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,BC=6,∠ABC=45°,BD平分∠ABC,M、N分別是BD、BC上的動點,則CM+MN的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O的內接四邊形ABCD中,AB=AD,∠C=120°,點E在上.
(1)求∠E的度數;
(2)連接OD、OE,當∠DOE=90°時,AE恰好為⊙O的內接正n邊形的一邊,求n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸相交于點A(﹣1,0)、B(3,0),與y軸相交于點C,點P為線段OB上的動點(不與O、B重合),過點P垂直于x軸的直線與拋物線及線段BC分別交于點E、F,點D在y軸正半軸上,OD=2,連接DE、OF.
(1)求拋物線的解析式;
(2)當四邊形ODEF是平行四邊形時,求點P的坐標;
(3)過點A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).
(1)求拋物線的解析式;
(2)如圖,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=45°,AB=,AC=6,點D,E為邊AC上的點,AD=1,CE=2,點F為線段DE上一點(不與D,E重合),分別以點D、E為圓心,DF、EF為半徑作圓.若兩圓與邊AB,BC共有三個交點時,線段DF長度的取值范圍是_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是垂直于水平面的一棵樹,小馬(身高1.70米)從點
出發,先沿水平方向向左走10米到
點,再經過一段坡度
,坡長為5米的斜坡
到達
點,然后再沿水平方向向左行走5米到達
點(
、
、
、
在同一平面內),小馬在線段
的黃金分割點
處(
)測得大樹的頂端
的仰角為37°,則大樹
的高度約為( )米.(參考數據:
)
A. 7.8米 B. 8.0米 C. 8.1米 D. 8.3米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點,F為BE上的一點,連結CF并延長交AB于點M,MN⊥CM交射線AD于點N.
(1)當F為BE中點時,求證:AM=CE;
(2)若,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com