科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知二次函數y=ax2﹣2ax﹣3a(a>0)圖象與x軸交于點A,B(點A在點B的左側),與y軸交于點C,頂點為D.
(1)求點A,B的坐標;
(2)若M為對稱軸與x軸交點,且DM=2AM.
①求二次函數解析式;
②當t﹣2≤x≤t時,二次函數有最大值5,求t值;
③若直線x=4與此拋物線交于點E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點),將圖象P沿直線x=4翻折,得到圖象Q,又過點(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點,求b的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A1、A2、A3…在直線y=x上,點C1,C2,C3…在直線y=2x上,以它們為頂點依次構造第一個正方形A1C1A2B1,第二個正方形A2C2A3B2…,若A2的橫坐標是1,則B3的坐標是_____,第n個正方形的面積是_____.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150704640/STEM/947823175bfc4b878475a9a15e16a258.png]
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖在平面直角坐標系中,過點A(0,2)的直線與⊙O相切于點C,與x軸交于點B且半徑為.
(1)求∠BAO的度數.(2)求直線AB的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A1,A2,A3…,An,An+1是直線上的點,且OA1=A1A2=A2A3=…AnAn+1=2,分別過點A1,A2,A3…,An,An+1作l1的垂線與直線
相交于點B1,B2,B3…,Bn,Bn+1,連接A1B2,B1A2,A2B3,B2A3…,AnBn+1,BnAn+1,交點依次為P1,P2,P3…,Pn,設△P1A1A2,△P2A2A3,△P3A3A4,…,△PnAnAn+1的面積分別為S1,S2,S3…,Sn,則Sn=______.(用含有正整數n的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖.請你根據統計圖中所提供的信息解答下列問題:
(1)接受問卷調査的學生共有 人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為 °;
(2)請補全條形統計圖;
(3)若該中學共有學生1600人,請根據上述調查結果,估計該學校學生中對校園安全知識達到“了解”和“基本了解”程度的總人數;
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環狀,圖中所示的是前3個正五邊形,要完成這一圓環還需正五邊形的個數為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com