精英家教網 > 初中數學 > 題目詳情
如圖,四邊形ABCD中,AB∥CD,AB=CD,要使四邊形ABCD為菱形,則可添加的條件為
AD=AB
AD=AB
.(填一個即可)
分析:首先根據AB∥CD,AB=CD可得四邊形ABCD是平行四邊形,再根據一組鄰邊相等的平行四邊形是菱形可得添加條件AD=AB.
解答:解:可添加的條件為AD=AB,
∵AB∥CD,AB=CD,
∴四邊形ABCD是平行四邊形,
∵AD=AB,
∴四邊形ABCD為菱形.
點評:此題主要考查了菱形的判定,關鍵是掌握菱形的判定方法:①菱形定義:一組鄰邊相等的平行四邊形是菱形;
②四條邊都相等的四邊形是菱形.
③對角線互相垂直的平行四邊形是菱形(或“對角線互相垂直平分的四邊形是菱形”).
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视