【題目】“半角型”問題探究:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究圖中線段BE,EF,FD之間的數量關系.小明同學的方法是將△ABE繞點A逆時針旋轉120°到△ADG的位置,然后再證明△AFE≌△AFG,從而得出結論:EF=BE+DF
(1)如圖2,在四邊形ABCD中,AB=AD,∠B +∠D=180°,E,F分別是邊BC,CD上的點,且∠EAF=∠BAD,上述結論是否仍然成立,并說明理由.
(2)實際應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離?
拓展提高
(3)如圖4,邊長為5的正方形ABCD中,點E、F分別在AB、CD上,AE=CF=1,O為EF的中點,動點G、H分別在邊AD、BC上,EF與GH的交點P在O、F之間(與0、F不重合),且∠GPE=45°,設AG=m,求m的取值范圍。
科目:初中數學 來源: 題型:
【題目】麗水苛公司將“麗水山耕”農副產品運往杭州市場進行銷售.記汽車行駛時間為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據經驗,v,t的一組對應值如下表:
v(千米/小時) | 75 | 80 | 85 | 90 | 95 |
t(小時) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根據表中的數據,求出平均速度v(千米/小時)關于行駛時間t(小時)的函數表達式;
(2)汽車上午7:30從麗水出發,能否在上午10:00之前到達杭州市?請說明理由:
(3)若汽車到達杭州市場的行駛時間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對角線相交于點O,點E在邊BC的延長線上,且OE=OB,聯結DE.
(1)求證:DE⊥BE;
(2)設CD與OE交于點F,若OF2+FD2=OE2,CE=3,DE=4,求線段CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一邊長為1的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OBl為邊作第三個正方形OBlB2C2,照此規律作下去,則點B2018的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】司機小李某天下午營運全是在東西走向的大道上行駛,如果規定向東行駛為正,向西行駛為負,這天下午行車里程如下:(單位:千米)
,
,
,
,
,
,
,
,
,
(1)被送到目的地時,小李在出發地的什么位置?
(2若每千米的營運額為8元,則這天下午的營運額為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察下列各等式:
13=1=×11×22
13+23=9=×22×32
13+23+33=36=×32×42
…
用你發現的規律解答下列問題:
(1)填空:13+23+33+…+(n﹣1)3+n3=×( )2×( )2(n為正整數);
(2)計算:
①13+23+33+…+493+503;
②23+43+63+…+983+1003
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一塊不規則的四邊形地皮ABCO,各個頂點的坐標分別為A(-2,6),B(-5,4),C(-7,0),O(0,0)(圖上一個單位長度表示10米),現在想對這塊地皮進行規劃,需要確定它的面積.
(1)求這個四邊形的面積;
(2)如果把四邊形ABCD的各個頂點的縱坐標保持不變,橫坐標加2,所得到的四邊形面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AD∥BC,AD=24cm,BC=30cm,點P從A向點D以1cm/s的速度運動,到點D即停止.點Q從點C向點B以2cm/s的速度運動,到點B即停止.直線PQ將四邊形ABCD截得兩個四邊形,分別為四邊形ABQP和四邊形PQCD,則當P,Q兩點同時出發,幾秒后所截得兩個四邊形中,其中一個四邊形為平行四邊形?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com