【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=4.0為BC邊上一點,以0為圓心,OB為半徑作半圓與BC邊和AB邊分別交于點D、點E,連接DE.
(1)當BD=3時,求線段DE的長;
(2)過點E作半圓O的切線,當切線與AC邊相交時,設交點為F.求證:△FAE是等腰三角形.
【答案】(1);(2)證明見解析.
【解析】
(1)由DB為直徑可以得到∠DEB=∠C=90°,由此可以證明Rt△DBE∽Rt△ABC有,把AC,BD,AB的值即可求得DE的值;
(2)由弦切角定理可得,∠B=∠FED,再由等角的余角相等知,∠A=∠FEA,故AF=EF.
解:(1)因為BD是直徑
所以角DEB是直角
所以
(2)證法一:連接OE,
∵EF為半圓O的切線,
∴∠DEO+∠DEF=90°,
∴∠AEF=∠DEO,
∵△DBE∽△ABC,
∴∠A=∠EDB,
又∵∠EDO=∠DEO,
∴∠AEF=∠A,
∴△FAE是等腰三角形;
證法二:連接OE
∵EF為切線,
∴∠AEF+∠OEB=90°,
∵∠C=90°,
∴∠A+∠B=90°,
∵OE=OB,
∴∠OEB=∠B,
∴∠AEF=∠A,
∴△FAE是等腰三角形.
科目:初中數學 來源: 題型:
【題目】在平面直角標系中,已知△ABC三個頂點的坐標分別為A(﹣1,2),B(﹣3,4),C(﹣1,6).
(1)畫出△ABC,并求出BC所在直線的解析式;
(2)畫出△ABC繞點A順時針旋轉90°后得到的△AB1C1,并求出△ABC在上述旋轉過程中掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
于點
,
,為了研究圖中線段之間的關系,設
,
,
(1)可通過證明,得到
關于
的函數表達式
__________,其中自變量
的取值范圍是___________;
(2)根據圖中給出的(1)中函數圖象上的點,畫出該函數的圖象;
(3)借助函數圖象,回答下列問題:①的最小值是__________;②已知當
時,
的形狀與大小唯一確定,借助函數圖象給出
的一個估計值(精確到0.1)或者借助計算給出
的精確值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為美化小區環境,物業計劃安排甲、乙兩個工程隊完成小區綠化工作.已知甲工程隊每天綠化面積是乙工程隊每天綠化面積的2倍,甲工程隊單獨完成600m2的綠化面積比乙工程隊單獨完成600m2的綠化面積少用2天.
(1)求甲、乙兩工程隊每天綠化的面積分別是多少m2;
(2)小區需要綠化的面積為9600m2,物業需付給甲工程隊每天綠化費為0.3萬元,付給乙工程隊每天綠化費為 0.2萬元,若要使這次的綠化總費用不超過10萬元,則至少應安排甲工程隊工作多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于A、B兩點.
(1)利用圖中的條件,求反比例函數和一次函數的解析式.
(2)求△AOB的面積.
(3)根據圖象直接寫出使一次函數的值大于反比例函數的值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩人同時登山,甲乙兩人距地面的高度y(米)與登山時間x(分)之間的函數圖象如圖所示,根據圖象所提供的信息解答下列問題:
(1)甲登山的速度是 米/分鐘,乙在A地提速時距地面的高度b為 米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,請求出乙提速后y和x之間的函數關系式.
(3)登山多長時間時,乙追上了甲,此時乙距A地的高度為多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E作直線l∥BC.
(1)判斷直線l與⊙O的位置關系,并說明理由;
(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系內,的三個頂點的分別為
,
,
(正方形網格中每個小正方形的邊長是一個單位長度).
(1)在網格內畫出向下平移2個單位長度得到的
,點
的坐標是________;
(2)以點為位似中心,在網格內畫出
,使
與
位似,且位似比為
,點
的坐標是________;
(3)的面積是________平方單位.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com